
Attacks on Cryptoprocessor Transaction Sets

Mike Bond

Computer Laboratory, University of Cambridge,
Pembroke Street, Cambridge, CB2 3QG, UK

Mike.Bond@cl.cam.ac.uk

Abstract. Attacks are presented on the IBM 4758 CCA and the Visa
Security Module. Two new attack principles are demonstrated. Related
key attacks use known or chosen differences between two cryptographic
keys. Data protected with one key can then be abused by manipulation
using the other key. Meet in the middle attacks work by generating a
large number of unknown keys of the same type, thus reducing the key
space that must be searched to discover the value of one of the keys in
the type. Design heuristics are presented to avoid these attacks and other
common errors.

1 Introduction

A cryptoprocessor is a tamper-resistant processor designed to manage crypto-
graphic keys and data in high-risk situations. The concept of a cryptoprocessor
arose because conventional operating systems are too bug-ridden and computers
too physically insecure to be trusted with information of high value. A nor-
mal microprocessor is enclosed within a tamper-resistant environment, so that
sensitive information can only be altered or released through a tightly defined
software interface – a transaction set. In combination with access control, the
transaction set should prevent abuse of the sensitive information. However, as
the functionality and flexibility of transaction sets have been pushed up by man-
ufacturers and clients, this extra complexity has made bugs in transaction sets
inevitable.

Sections 2 and 3 of this paper give an overview of cryptoprocessors in the
context of four important architectural principles, and then describe the new
vulnerabilities in a generalised way. Sections 4 and 5 introduce attacks on two
widely fielded cryptoprocessors – the IBM 4758, and the Visa Security Module.
Finally, some straightforward design heuristics are suggested that, whilst not
guaranteeing the security of a transaction set, will at least stop the same mistakes
being made over again.

2 Tour of a Cryptoprocessor

A cryptoprocessor’s interface to the world is its transaction set – a group of
commands supported by the processor to manipulate and manage sensitive in-
formation, usually cryptographic keys. Users are limited to the subset of the

Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 220–234, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Attacks on Cryptoprocessor Transaction Sets 221

transaction set which reflects their needs using an access control system. The
intended inputs and outputs of commands in a transaction set are described in
terms of a type system, which describes the content of each type, and then as-
signs a type to each input and output of the commands. Keys tend to be stored
in a hierarchical structure so that large amounts of information can be shared
by securely sharing only a single piece of information at the base of a branch in
the hierarchy.

2.1 Transaction Set Fundamentals

– User commands are the bulk of the cryptoprocessor’s workload. The com-
mands allow data to be processed (e.g. encrypted, decrypted, MACs gener-
ated/verified) using keys whose values are retained within the tamper-proof
environment, remaining unknown to the user. The user is thus restricted to
performing actions with these keys online, where procedural controls can be
enforced. Application-specific commands may also exist, which manipulate
encrypted inputs and return an encrypted output or maybe a simple return
code (e.g. a yes/no answer to whether an entered PIN matched the correct
value for an account number, without revealing either value).

– Key Management commands give users the ability to rearrange the key struc-
ture. Import and export commands will allow extraction of keys from the
structure for sharing with other processors or environments, and commands
to build up keys from multiple parts may be available to support dual control
policies.

– Administration commands are highly dependent on implementation details,
but would generally include commands for management of particularly sen-
sitive high-level keys, modification of the access rights for other users, and
output of clear PIN numbers in financial systems.

2.2 Access Control

Access control is necessary to ensure that only authorised users have access
to powerful transactions which could be used to extract sensitive information.
These can be used to enforce procedural controls such as dual control, or m-of-n
sharing schemes, to prevent abuse of the more powerful transactions.

The simplest access control systems grant special authority to whoever has
first use of the processor and then go into the default mode which affords no
special privileges. An authorised person or group will load the sensitive infor-
mation into the processor at power-up; afterwards the transaction set does not
permit extraction of this information, only manipulation of other data using it.
The next step up in access control is including a special authorised mode which
can be enabled at any time with one or more passwords, physical key switches,
or smartcards.

More versatile access control systems will maintain a record of which transac-
tions each user can access, or a role-based approach to permit easier restructuring
as the job of an individual real-world user changes, either in the long term or



222 M. Bond

through the course of a working day. In circumstances where there are multiple
levels of authorisation, the existence of a ‘trusted path’ to users issuing spe-
cial commands becomes important. Without using a secured session or physical
access port separation, it would be easy for an unauthorised person to insert
commands of their own into this session to extract sensitive information under
the very nose of the authorised user.

2.3 Key Hierarchies

Storage of large numbers of keys becomes necessary when enforcing protection
between multiple users, and serves to limit damage if one is compromised. The
common storage method is a hierarchical structure, giving the fundamental ad-
vantage of efficient key sharing: access can be granted to an entire key set by
granting access to the key at the next level up the hierarchy, under which the
set is stored.

Confusion arises when the hierarchy serves more than one distinct role. Alter-
nate roles include inferring the type of a key from its position in the hierarchy,
or increasing the storage capacity of the cryptoprocessor by keeping only the
top-level keys within the tamper-proofed environment, and storing the remain-
der externally, with each lower level encrypted using the appropriate key from
the level above.

Figure 1 shows a common model with three layers of keys:

KEKs

User Data

Outgoing Working Keys

Master Key

KEK MK DATA MK
Master
Keys

Operational
Keys

Transport
Keys

User
Data

Shared Data

Incoming

Shared Data

Rectangles
represent TYPES

Ovals
represent KEYS

Fig. 1. An example key hierarchy



Attacks on Cryptoprocessor Transaction Sets 223

The top layer contains ‘master keys’ which are never revealed outside the
cryptoprocessor, themiddle layer ‘transport keys’ or ‘key-encrypting-keys’ (KEKs)
to allow sharing between processors, and the bottom layer working keys and
session keys – together known as ‘operational keys’, The scope of some crypto-
processors extends to an even lower layer, containing data encrypted with the
operational keys.

2.4 Key Typing Systems

Assigning type information to keys is necessary for fine grain access control to
the transaction set. This is because many transactions have the same core func-
tionality, and without key typing an attacker could achieve the equivalent of
execution of a transaction he doesn’t have permission for by using an equiva-
lent permitted transaction (e.g. calculating a MAC can be equivalent to CBC
encryption, with all but the last block discarded). A well designed type system
can prevent the abuse of the similarities between transactions.

An important example is the type distinction between communications data
keys and PIN processing keys in financial systems. Customer PIN numbers are
calculated by encrypting the account number with a PIN derivation key, thus
commands using these keys are carefully controlled. However, if PIN keys and
data keys were indistinguishable in type, any user with access to data manipula-
tion transactions could calculate the PIN numbers from accounts: both employ
the same DES or triple-DES (3DES) encryption algorithm to achieve their pur-
pose.

IBM’s financial products use the Common Cryptographic Architecture (CCA)
– a standardised transaction set. The CCA name for the type information of a
key is a control vector. Control vectors are bound to encrypted keys by XORing
the control vector with the key used to encrypt, and including an unprotected
copy for reference (1). The control vector is simply a bitpattern chosen to de-
note a particular type. If a naive attacker changes the clear copy of the control
vector (i.e. the claimed key type), when the key is used, the cryptoprocessor’s
decryption operation should simply produce garbage (2). The implementation
details are in ‘Key Handling with Control Vectors’ [2], and ‘A Key Management
Scheme Based on Control Vectors’ [3].

(1) EKm⊕CV (KEY ) , CV
(2) DKm⊕CVM OD(EKm⊕CV (KEY )) �= KEY

3 The Attacker’s Toolkit

The attacks in sections 4 and 5 are presented as combinations of attack ‘building
blocks’. This section describes new building blocks, some intuitively dangerous in
their own right, and others which only reap maximum damage in combination.
The full set includes reapplications of existing techniques from other fields, and
is augmented by the usual tools and methods available to an attacker (e.g. brute
force search, cryptanalysis).



224 M. Bond

3.1 The Meet in the Middle Attack

Users can normally select which key is used to protect the output of a command,
provided it is of the correct type. The flexibility gained from specification using
the type system is at the price of risking catastrophic failure if the value of
even just one key within a type is discovered – select the cracked key, and the
command output will be decipherable. The meet in the middle attack is just
common sense statistics: if you only need to crack a single key within a type to
be successful, the more keys that you attack in parallel, the shorter the average
time it takes to discover one of them using a brute force search.

The attacker first generates a large number of keys. 216 (65,536) is a sensible
target: somewhere between a minute and an hour’s work for the cryptoprocessors
examined. The same test vector must then be encrypted under each key, and
the results recorded. Each encryption in the brute force search is then compared
against all versions of the encrypted test pattern. Checking each key will now
take slightly longer, but there will be many less to check. The observation at the
heart of the attack is that it is much more efficient to perform a single encryption
and compare the result against many different possibilities than it is to perform
an encryption for each comparison.

The power of the attack is limited by the time the attacker can spend gen-
erating keys. It is reasonable to suppose that up to 20 bits of key space could
be eliminated with this method. Single DES fails catastrophically, its 56 bit key
space reduced to 40 bits or less. A 240 search takes a few days on a home PC.
Attacks on a 64 bit key space could be brought within range of funded organi-
sations. The attack has been named a ‘meet in the middle’ attack because the
brute force search machine and the cryptoprocessor attack the key space from
opposite sides, and the effort expended by each meets somewhere in the middle.

3.2 Related Key Attacks

Allowing related keys to exist within a cryptoprocessor is dangerous, because
it causes dependency between keys. Two keys can be considered related if the
bitwise difference between them is known. Once the key set contains related keys,
the security of one key is dependent upon the security of all keys related to it. It
is impossible to audit for related keys without knowledge of what relationships
might exist – and this would only be known by the attacker. Thus, the deliberate
release of one key might inadvertently compromise another. Partial relationships
between keys complicate the situation further. Suppose two keys become known
to share certain bits in common. Compromise of one key could make a brute force
attack feasible against the other. Related keys also endanger each other through
increased susceptibility of the related group to a brute force search (see 3.1).

Keys with a chosen relationship can be even more dangerous because some
architectures combine type information directly into the key bits. Ambiguity
is inevitable: the combination of one key and one type might result in exactly
the same final key as the combination of another key and type. Allowing a
chosen difference between keys can lead to opportunities to subvert the type
information, which is crucial to the security of the transaction set.



Attacks on Cryptoprocessor Transaction Sets 225

Although in most cryptoprocessors it is difficult to enter completely chosen
keys (this usually leads straight to a severe security failure), obtaining a set of
unknown keys with a chosen difference can be quite easy. Valuable keys (usually
KEKs in the hierarchy diagram) are often transferred in multiple parts, combined
using XOR to form the final key. At generation, the key parts would be given
to separate couriers and data entry staff, so that a dual control policy could be
implemented. Only collusion would reveal the value of the key. However, any key
part holder could modify his part at will, so it is easy to choose a relationship
between the actual value loaded, and the intended key value. The entry process
could be repeated twice to obtain a pair of related keys. Some architectures allow
a chosen value to be XORed with any key at any time.

3.3 Unauthorised Type-Casting

The commonality between transactions makes the integrity of the type system
almost as important as the access controls over the transactions themselves.
Once the type constraints of the transaction set are broken, abuse is easy (e.g. if
some high security KEK could be retyped as a data key, keys protected with it
could be exported in the clear using a standard data decipherment transaction).

Certain type casts are only ‘unauthorised’ in so far as that the designers never
intended them to be possible. In some architectures it may even be difficult to
tell whether or not an opportunity to type cast is a bug or a feature! Indeed, IBM
describes a method in the manual for their 4758 CCA [1] to convert between key
types during import to allow interoperability with earlier products which used
a more primitive type system. The manual does not mention how easily this
feature could be abused. If type casting is possible, it should also be possible to
regulate it at all stages with the access control functions.

Cryptoprocessors which do not maintain internal state about their key struc-
ture have difficulties deleting keys. Once an encrypted version of a key has left
the cryptoprocessor it cannot prevent an attacker storing his own copy for later
re-introduction to the system. Thus, whenever this key undergoes an authorised
type cast, it remains a member of the old type as well as adopting the new type.
A key with membership of multiple types thus allows transplanting of parts of
the old hierarchy between old and new types. Deletion can only be effected by
changing the master keys at the top of the hierarchy, which is radical and costly.

3.4 Poor Key-Half Binding

Cryptographic keys get split into distinct parts, when the block length of the
algorithm protecting them is shorter than the key length. 3DES is particularly
common, and has a 112 bit key made up from two 56 bit single DES keys.
When the association between the halves of keys is not kept, the security of the
key is crippled. A number of cryptoprocessors allow the attacker to manipulate
the actual keys simply by manipulating their encrypted versions in the desired
manner. Known or chosen key halves could be substituted into unknown keys,
immediately halving the keyspace. The same unknown half could be substituted



226 M. Bond

into many different keys, creating a related key set, the dangers of which are
described in section 3.2.

3DES has an interesting deliberate feature that makes absence of key-half
binding even more dangerous. A 3DES encryption consists of a DES encryption
using one key, a decryption using a second key, and another encryption with
the first key. If both halves of the key are the same, the key behaves as a single
length key. (EK1(DK2(EK1(data))) = EK(data) when K = K1 = K2). Pure
manipulation of unknown key halves can yield a 3DES key which operates exactly
as a single DES key. Some 3DES keys are thus within range of a brute force
cracking effort.

3.5 Conjuring Keys from Nowhere

Cryptoprocessor designs which store encrypted keys outside the tamper-proof
environment can be vulnerable to unauthorised key generation. For DES keys,
the principle is simple: simply choose a random value and submit it as an en-
crypted key. The decrypted result will also be random, with a 1 in 28 chance
of having the correct parity. Some early cryptoprocessors used this technique to
generate keys (keys with bad parity were automatically corrected). Most now
check parity but rarely enforce it, merely raising a warning. In the worst case,
the attacker need only make trial encryptions with the keys, and observe whether
key parity errors are raised. The odds of 1 in 216 for 3DES keys are still quite
feasible, and it is even easier if each half can be tested individually (see 3.4).

4 Attacks on the NSM (A Visa Security Module Clone)

The Visa Security Module (VSM) is a cryptoprocessor with a concise, focused
transaction set, designed to protect PIN numbers transmitted over private bank
ATM networks, and on the inter-bank link system supported by VISA. It was
designed in the early eighties, and the NSM is a software compatible clone [5].

The VSM has two authorisation states (user and authorised) enabled using
passwords. The NSM improves on this by splitting the authorised state in two
– supervisor and administrator, selected by two key switches on the casing. The
user state gives access to transactions to verify customers PINs in a number
of ways, and to translate them between encryption keys to allow forwarding of
requests to and from other banks in the network. The user state also contains
transactions to permit key generation and update for session keys. The supervisor
state is only enabled upon special procedural controls and enables transactions
to allow extraction of PIN numbers to a printer connected to a dedicated port on
the cryptoprocessor. Administrator authorisation allows generation of high-level
master keys, and is rarely used. It recognises nine distinct types in total, shown
by rectangles in figure 2. The ovals represent individual keys.

At the top of the key hierarchy are five 3DES master keys, stored in regis-
ters within the cryptoprocessor. These protect the five fundamental types, and
all other types are likewise inferred implicitly from a key’s position within the



Attacks on Cryptoprocessor Transaction Sets 227

hierarchy. Apart from the 3DES master keys, all other keys are Single DES, and
so must be changed regularly. The PIN derivation keys are an exception to the
regular changes, but are afforded extra protection by measures to ensure that
known plaintext/ciphertext pairs are not available to an attacker.

ZCMK TMK/PIN

WK TC

LP

ZCMK_I TMK_I

ZCMK WK TC TMK/PIN LP
Master
Keys

Op.
Keys

Transport
Keys

WK_I TC_I
User
Data

Fig. 2. The VSM key hierarchy

Terminal Master Keys (TMKs) are copies of those used in ATMs, available
to the VSM so that it can prepare keysets allowing the ATMs to verify PINs
themselves. PIN keys are used to convert account numbers into PIN numbers. The
4 digit PINs entered by customers are calculated from the result of encrypting the
account number with the PIN key, using a publicly available algorithm. TMKs and
PIN keys occupy the same type in the VSM, even though they are conceptually
different. Zone Control Master Keys (ZCMKs) are keys to be shared with other
banking networks, used to protect the exchange of working keys. Working Keys
(WKs) are used to protect trial PINs that customers have entered, whilst they
travel through the network on the way to the correct bank for verification, and
are not used for intra-bank communications. Terminal Communications keys
(TCs) are for protecting control information going to and from ATMs. Note
that all keys sent to an ATM are protected with a TMK. Figure 3 shows the
commands available to the normal user as lines between types. Two extra ‘types’
are shown: (RAND) and (CLEAR). The (RAND) type can be thought of as a source
of unknown random numbers, so lines emanating from it represent key generation
transactions. (CLEAR) is a source of user chosen values. The notation TYPE_I is
used to stand for information encrypted with a key of type TYPE.

4.1 VSM Compatibles – A Poor Type System Attack

The amalgamation of the TMK and PIN types is responsible for a number of
weaknesses in the VSM. One possible attack is to enter an account number as



228 M. Bond

ZCMKTMK/PIN WK

TC

LPZCMK_I TMK_I WK_I

TC_I(CLEAR)(RAND)

Fig. 3. The VSM type system

a TC key, and then translate this to encryption under a PIN key. The command
responsible is designed to allow TC keys to be encrypted with a TMK for transfer
to an ATM, but because TMKs and PIN keys share the same type, the TC can
also be encrypted under a PIN key in the same way. This attack is very simple
and effective, but is perhaps difficult to spot because the result of encryption
with a PIN key is a sensitive value, and it is counterintuitive to imagine an
encrypted value as sensitive when performing an analysis. Choosing a target
account number ACCNO, the attack can be followed on the type transition diagram
in figure 3, moving from (CLEAR) to TC (1), and finally to TMK_I (2).

(1) ACCNO −→ {ACCNO}TC (ACCNO ∈ CLEAR)
(2) {ACCNO}TC −→ {ACCNO}TMK I (TMK I = A PIN key)

Although the attack does not directly exploit any of the methods from sec-
tion 3, it demonstrates the fragility of transaction sets, and is a good example
of the characteristics of a broken transaction set when analysed in the context
of key hierarchies and type systems.

4.2 VSM Compatibles – Meet in the Middle Attack

The meet in the middle attack can be used to compromise eight out of the nine
types used by the VSM. The VSM does not impose limits or special authorisation
requirements for key generation, so it is easy to populate all the types with
large numbers of keys. Indeed, it cannot properly impose restrictions on key
generation because of the ‘key conjuring’ attack (section 3.5) which works with
many cryptoprocessors which store keys externally.

The target type should be populated with at least 216 keys, and a test vector
encrypted under each. The dedicated ‘encrypt test vector’ command narrowly
escapes compromising all type because the default test vector does not have the



Attacks on Cryptoprocessor Transaction Sets 229

correct parity to be accepted as a key. Instead, the facility to input a chosen
terminal key (CLEAR −→ TC in figure 3) can be used to create the test vectors.
The final step of the attack is to perform the 240 brute force search offline.

The obvious types to attack are the PIN/TMK and WK types. Once a single
PIN/TMK key has been discovered, all the rest can be translated to type TMK_I,
encrypted under the compromised TMK. The attacker then decrypts these keys
using a home PC. Compromise of a single Working Key (WK) allows all trial
PINs entered by customers to be decrypted by translating them from encryption
under their original WK to encryption under the compromised one (this command
is shown by the looping arrow on WK_I in figure 3).

5 Attacks on the IBM 4758 CCA

The Common Cryptographic Architecture (CCA) is a standardised transaction
set which is implemented by the majority of IBM’s financial security products.
The 4758 is a PC-compatible cryptographic coprocessor which implements the
CCA. Control over the transaction set is quite flexible: role-based access control
is available, and the users communicate via trusted paths protected with 3DES
session keys. The transaction set itself is large and complex, with all the typical
transactions described in section 2.1, as well as many specialised commands to
support financial PIN processing. The CCA stores nearly all keys in encrypted
form outside the cryptoprocessor, with a single 168-bit master key KM at the
root of its key hierarchy:

The CCA holds type information on keys using control vectors. A control
vector is synonymous with a type, and is bound to encrypted keys by XORing

DAT

Master
Keys

Op.
Keys

Transport
Keys

DAT_IPIN_IUser
Data

IMPORTER EXPORTER

DATPINMACMAC PINDATMAC PIN

MAC_I DAT_IPIN_IMAC_I DAT_IPIN_I MAC_I

KMxIMP KMxIMP KMxMAC KMxPIN KMxDAT

KM

Fig. 4. The 4758 CCA key hierarchy



230 M. Bond

the control vector with the key used to encrypt, and including an unprotected
copy for reference.

5.1 4758 CCA – Key Import Attack

One of the simplest attacks on the 4758 is to perform an unauthorised type cast
using IBM’s ’pre-exclusive-or’ type casting method [1]. A typical case would
be to import a PIN derivation key as a data key, so standard data ciphering
commands could be used to calculate PIN numbers, or to import a KEK as
a DATA key, to allow eavesdropping on future transmissions. The Key_Import
command requires a KEK with permission to import (an IMPORTER), and the
encrypted key to import. The attacker must have the necessary authorisation
in his access control list to import to the destination type, but the original key
can have any type. Nevertheless, with this attack, all information shared by
another cryptoprocessor is open to abuse. More subtle type changes are worthy
of mention, such as re-typing the right half of a 3DES key as a left half.

A related key set must first be generated (1). The ‘Key_Part_Import’ com-
mand acts to XOR together a chosen value with an encrypted key. If a dual
control policy prevents the attacker from access to an initial key part, one can
always be conjured (section 3.5). The chosen difference between keys is set to the
difference between the existing and desired control vectors. Normal use of the
’Key_Import’ command would import KEY as having the old_CV control vector.
However, the identity (KEK1 ⊕ old_CV) = (KEK2⊕new_CV) means that claim-
ing that KEY was protected with KEK2, and having type new_CV will cause the
cryptoprocessor to retrieve KEY correctly (3), but bind in the new type new_CV.

Related Key Set (1) KEK1 = KORIG
KEK2 = KORIG⊕ (old CV ⊕ new CV )

Received Key (2) EKEK1⊕old CV (KEY ) , old CV
Import Process (3) DKEK2⊕new CV (EKEK1⊕old CV (PKEY )) = PKEY

A successful attack requires circumvention of the bank’s procedural controls,
and the attacker’s ability to tamper with his own key part. IBM’s advice is
to take measures to prevent an attacker obtaining the necessary related keys.
Optimal configuration of the access control system can indeed avoid the attack,
but the onus is on banks to have tight procedural controls over key part assembly,
with no detail in the manual as to what these controls should be. The manual
will be fixed [4], but continuing to use XOR will make creating related key sets
very easy. A long-term solution is to change the control vector binding method
to have a one-way property, such that the required key difference to change
between types cannot be calculated – keys and their type information cannot be
unbound.

5.2 4758 CCA – Import/Export Loop Attack

The limitation of the key import attack described in 5.1 is that only keys sent
from other cryptoprocessors are at risk from the attack, because these are the



Attacks on Cryptoprocessor Transaction Sets 231

only ones that can be imported. The ‘Import/Export Loop’ attack builds upon
the Key Import attack by demonstrating how to export keys from the crypto-
processor, so their types can be converted as they are re-imported.

The simplest Import/Export loop would have the same key present as both
an importer and an exporter. However, in order to achieve the type conversion,
there must be a difference of (old_CV⊕new_CV) between the two keys. Gener-
ate a related key set (1), starting from a conjured key part if necessary. Now
conjure a new key part KEKP, by repeated trial of key imports using IMPORTER1,
and claiming type importer_CV, resulting in (2). Now import with IMPORTER2,
claiming type exporter_CV, the type changes on import as before (3).

(1) IMPORTER1 = RAND
IMPORTER2 = RAND ⊕ (importer CV ⊕ exporter CV )

(2) EIMPORTER1⊕importer CV (KEKP )
(3) DIMPORTER2⊕exporter CV (EIMPORTER1⊕importer CV (KEKP ))=KEKP

(4) EXPORT CONV ERT = KEKP
(5) IMPORT CONV ERT1 = KEKP ⊕ (source1 CV ⊕ dest1 CV )

· · ·
IMPORT CONV ERTn = KEKP ⊕ (source1 CV ⊕ destn CV )

Now use Key_Part_Import to generate a related key set (5) which has chosen
differences required for all type conversions you need to make. Any key with
export permissions can now be exported with the exporter from the set (4), and
re-imported as a new type using the appropriate importer key from the related
key set (5). IBM recommends audit for same key used as both importer and
exporter [1], but this attack employs a relationship between keys known only
to the attacker, so conventional audit fails.

5.3 4758 CCA – 3DES Key Binding Attack

The 4758 CCA does not properly bind together the halves of its 3DES keys.
Each half has a type associated, distinguishing between left halves, right halves,
and single DES keys. However, for a given 3DES key, the type system does
not specifically associate the left and right halves as members of that instance.
The ‘meet in the middle’ technique can thus be successively applied to discover
the halves of a 3DES key one at a time. This allows all keys to be extracted,
including ones which do not have export permissions, so long as a known test
vector can be encrypted.

4758 key generation gives the option to generate replicate 3DES keys. These
are 3DES keys with both halves having the same value. The attacker generates
a large number of replicate keys sharing the same type as the target key. A meet
in the middle attack is then used to discover the value of two of the replicate
keys (a 241 search). The halves of the two replicate keys can then be exchanged
to make two 3DES keys with differing halves. Strangely, the 4758 type system
permits distinction between true 3DES keys and replicate 3DES keys, but the



232 M. Bond

manual states that this feature is not implemented, and all share the generic
3DES key type. Now that a known 3DES key has been acquired, the conclusion
of the attack is simple; let the key be an exporter key, and export all keys using
it.

If the attacker does not have the permissions to make replicate keys, he must
generate single length DES keys, and change their left half control vector to ‘left
half of a 3DES key’. This type casting can be achieved using the Key Import
attack (section 5.1). If the value of the imported key cannot be found beforehand,
216 keys should be imported as ‘single DES data keys’, used to encrypt a test
vector, and an offline 241 search should find one. Re-import the unknown key as
a ‘left half of a 3DES key’. Generate 216 3DES keys, and swap in the known left
half with all of them. A 240 search should yield one of them, thus giving you a
known 3DES key.

If the attacker cannot easily encrypt a known test pattern under the target
key type (as is usually the case for KEKs), he must bootstrap upwards by first
discovering a 3DES key of a type under which he has permissions to encrypt a
known test vector. This can then be used as the test vector for the higher level
key, using a Key_Export to perform the encryption.

A given non-exportable key can also be extracted by making two new versions
of it, one with the left half swapped for a known key, and likewise for the right
half. A 256 search would yield the key (looking for both versions in the same
pass through the key space). A distributed effort or special hardware would be
required to get results within a few days, but such a key would be a valuable
long term key, justifying the expense. A brute force effort in software would
be capable of searching for all non-exportable keys in the same pass, further
justifying the expense.

6 Conclusions

The cryptoprocessors examined have disappointing dependency upon tight pro-
cedural controls in the operating environment – they have failed to realise the
full potential of tamper-resistant enclosure. It is strange that the transaction sets
of both simple, highly-specialised cryptoprocessors and flexible, complex cryp-
toprocessors have both been found vulnerable to an individual corrupt insider.
Perhaps this is because in security the design rule ‘keep it simple’ collides with
the need for explicitness. The complex systems fail to keep it simple, and the
simple ones simplify too severely. The design heuristics presented below may go
against the grain of the ‘keep it simple’ or ‘be explicit’ principles individually,
but the best solution has to be a compromise. In the best case these heuristics
go a long way to avoiding security pitfalls, and in the worst case, the heuristics
at least reveal the areas in which compromises must be made.

6.1 Design Heuristics

– Known or chosen keys should not be allowed into the key hierarchy.



Attacks on Cryptoprocessor Transaction Sets 233

– Avoid related key sets. If you must have them, keep relationship secret to
the cryptoprocessor, or generate them dynamically from a single key.

– Ensure there is a trusted path to the cryptoprocessor available for the issue
of sensitive commands.

– Do not rely on key parity bits for integrity checking: the chance of accidental
success is too high.

– Do not allow transactions to produce ‘garbage’: results with no clearly de-
fined meaning when the inputs are invalid. This frustrates analysis.

– Keep access control as fine grain as possible: highly flexible transactions are
dangerous without highly flexible access control for them.

– Avoid types whose roles cross hierarchical boundaries.
– If using encryption with short key lengths, limit membership levels of types

to avoid the meet in the middle attack, or prevent test vector generation.
– Impose restrictions on key generation to limit the attackers options.
– Ensure that keys are ‘atomic’ : permitting manipulation of key parts is dan-

gerous.
– Be explicit when generating your type system.
– Don’t try to infer type information from a random number: ambiguity is

inevitable.

6.2 Future Directions

The VSM and CCA architectures have been shown to be unsatisfactory, and a
skeletal toolkit has been presented for analysing these shortcomings. Research
awaiting publication includes the application of the new attack techniques to
more transaction sets, and future research includes the enlargement of the anal-
ysis toolkit, and the long-term aim of designing a transaction set which is re-
sistant to these modes of failure, and is well balanced between simplicity and
explicitness.

Acknowledgements

The author wishes to thank (alphabetically) Ross Anderson, Richard Clayton,
George Danezis and Larry Paulson for their assistance in verifying and under-
standing the consequences of these attacks. Work on the VSM was inspired by
a talk given by Ross Anderson [7]. The research was conducted thanks to the
generous funding of the UK Engineering and Physical Sciences Research Council
(EPSRC).

References

1. IBM 4758 PCI Cryptographic Coprocessor, CCA Basic Services Reference And
Guide, Release 1.31 for the IBM 4758-001

2. S.M. Matyas, ‘Key Handling with Control Vectors’, IBM Systems Journal v. 30 n.
2, 1991, p. 151-174



234 M. Bond

3. S.M. Matyas, A.V. Le, D.G. Abraham, ‘A Key Management Scheme Based on
Control Vectors’, IBM Systems Journal v. 30 n. 2, 1991, pp. 175-191

4. IBM Comment on ‘A Chosen Key Difference Attack on Control Vectors’, Jan 2000
5. NSM Developers Manual, Computer Security Associates (Pty.) Ltd. , July 1990
6. ‘Security Requirements for Cryptographic Modules’ Federal Information Processing

Standards 140-1
7. ‘The Correctness of Crypto Transaction Sets’ R. Anderson, April 2000


	1 Introduction
	2 Tour of a Cryptoprocessor
	2.1 Transaction Set Fundamentals
	2.2 Access Control 
	2.3 Key Hierarchies 
	2.4 Key Typing Systems 

	3 The Attacker's Toolkit 
	3.1 The Meet in the Middle Attack 
	3.2 Related Key Attacks
	3.3 Unauthorised Type-Casting 
	3.4 Poor Key-Half Binding 
	3.5 Conjuring Keys from Nowhere 

	4 Attacks on the NSM (A Visa Security Module Clone) 
	4.1 VSM Compatibles - A Poor Type System Attack 
	4.2 VSM Compatibles - Meet in the Middle Attack 

	5 Attacks on the IBM 4758 CCA 
	5.1 4758 CCA - Key Import Attack
	5.2 4758 CCA - Import/Export Loop Attack 
	5.3 4758 CCA - 3DES Key Binding Attack 

	6 Conclusions 
	6.1 Design Heuristics 
	6.2 Future Directions 

	Acknowledgements
	References

