
���������	�
�����	������

�������	������	�
�	��

Mike Bond
Computer Security Group

2002 Information Security Forum 28th January

��������

• Using cryptographic hardware to protect your business
• Disasters in retail banking crypto hardware
• Developing the threat model
• Getting procedural controls right
• Gaining assurance and penetration testing
• Peer review and Summary

��	�����	���������������

• A tamper-resistant processor which uses cryptography
to control processing of and access to sensitive data

• Attached to a host computer e.g. web server, mainframe
which communicates requests via the Security API

• Can run software provided by manufacturer or client

������
���������	�
�	����

• Those with high crypto throughput requirements
Example: SSL acceleration for webservers

• Those who need to enforce access policies to sensitive
information
Example: Granting signing permission at a Certification Authority

• Those who need to protect mission critical sensitive data
Example: Protecting PIN generation keys at banks

�������������	������	�
�	�����

�������������������

• Define the security-relevant code, and load it into the
cryptoprocessor to isolate it from the rest of the system

• Keep the amount of security-relevant code to a
minimum, to make it easier to get assurance of
correctness

��� ���	����

• Write the security relevant code in-house
• Configure existing software provided by a manufacturer

or third-party to suit your needs

But who tests the design?

!��	���������"��	����	�#����

�������	�
�	��

• Cryptoprocessors used for securing communications
between banks, from banks to ATMs, and for storing
customer PINs and PIN generation keys

• Major API designed by VISA; several manufacturers
provide implementations e.g. Racal/Zaxus/Thales

API specifications only available to banks and original
designers

����$��	�%��������&
���

�����'��� ��	�#

• Top-level crypto keys exchanged between banks in
several parts carried by separate couriers, which are
recombined using the exclusive-OR function

• A single operator could feed in the same part twice,
which cancels out to produce an ‘all zeroes’ test key.
PINs could be extracted in the clear using this key

��������	����	���� ��	�#

• Bank adds a new command to the API to calculate the
offset between a new generated PIN and the customer’s
chosen PIN

• Possessing a bank account gives knowledge of one
generated PIN. Any customer PIN could be revealed by
calculating the offset between it and the known PIN

�����%����(� ��	�#

• Encrypting communication keys for transfer to an
ATMs used exactly the same process as calculating a
customer PIN

• Customer PINs could be generated by re-labelling an
account number as a communications key, and using the
same encryption process

����)�&�*+,-���

&���.��.���.&�

��� ��	�#

• Brute force attack (guessing) to find a single DES key is
extremely difficult

• But if there are many targets of equal value, the effort to
discover one of the keys is much less

• Affects cryptoprocessors from at least six different
manufacturers (every module examined so far)

�� �/	������&
��

• Complex systems fail in complex ways!

• Triple DES key binding design error reduces effort to
crack to twice as hard as single DES

• Meet-in-the-middle attack cracks DES within 24 hours
• Poor design of procedural controls mean a single user

could have all the relevant permissions

• In depth feasibility study of this attack at University of
Cambridge received international publicity in Nov ‘01

0������0�	���
����"��	����	�#���

• Cryptoprocessors are only as secure as the software they
run, or as the people who configure them

• Both standardised and in-house developed APIs are
susceptible

• Even the massive in-house resources of a company such
as IBM has not protected against serious faults

!�����������������	��&
��

• How can the end user develop their crypto hardware
application to use third-party products effectively, and
be robust against attacks?

• Develop your threat model (understand your attackers)
• Understand the manufacturer’s perception of your threat

model (not the same as the features provided)
• Choose the product where the threat models match best

1�������	��&
��

• What information/access is valuable?
• Main threat from insiders or outsiders?
• How much physical access would the attacker have?
• How much privilege might the attacker already have?
• How long would it take to discover a security breach?

&	���	������2������	��&
��

• How much tamper-resistance is provided?
• What actions can be put under dual control?
• Reliance on audit to spot attacks?
• What authentication tokens are available, and how are

they normally mapped to personnel?
• Are those who initialise the module trusted?
• What information must travel via a trusted

communications path?

3�����������
��	���������"����

• Many failures occur when the end user makes false
assumptions about the guarantees an API feature
provides

• Example: IBM CCA key entry procedure provides dual
control on the confidentiality of a key, but not on its
integrity. Attacks involving integrity compromise must
be protected against some other way

3	������ ����	���

• How can the manufacturer develop their crypto
hardware to function correctly, and encourage safe
usage?

• Publish the API (not standardise)
• Test API against specific threat models
• Detail not just intended usage, but all assumptions

required for secure operation

������	�����������

• The ultimate test of security with a specific threat model
• But threat model is too specific. Will change as software

updated, personnel move, and procedures modified.

• Only reveals a specific instance of a possible generic
fault.

• Manufacturers faults get patched by end user.

�����"�����

• Lots of brainpower available in the open community
for free. Only requirement is mutual benefit.

• The good guys/bad guys arms race is inevitable.
Keeping APIs in-house is running the race blind.

• Crypto hardware is expensive and attacks generally
require some degree of physical access. In this field,
there is no such thing as a ‘script kiddie’.

%�((��

• Physical attack is a serious threat, and crypto hardware can
provide resistance to it

• Crypto hardware is susceptible to software flaws just like normal
operating systems and PCs

• Crypto hardware is specially designed to enforce access control
policies which resist attack by individual corrupt insiders unlike
normal operating systems

• As much care must be taken understanding and configuring third
party software for cryptoprocessors as in writing your own in-
house

• The open community is a valuable tool, and can be used without
adopting a ‘full disclosure’ mentality.

&���)���(���

My Research Homepage
http://www.cl.cam.ac.uk/~mkb23/research.html

Attack on the IBM 4758 CCA
http://www.cl.cam.ac.uk/~rnc1/descrack

