
ARSPA 2004 Preliminary Version

Extending Security Protocol Analysis : New
Challenges

Mike Bond 1,2

Computer Laboratory
University of Cambridge

Cambridge, UK.

Jolyon Clulow 1,3

Computer Laboratory
University of Cambridge

Cambridge, UK.

Abstract

We argue that formal analysis tools for security protocols are not achieving their full
potential, and give only limited aid to designers of more complex modern protocols,
protocols in constrained environments, and security APIs. We believe that typical
assumptions such as perfect encryption can and must be relaxed, while other threats,
including the partial leakage of information, must be considered if formal tools are
to continue to be useful and gain widespread, real world utilisation. Using simple
example protocols, we illustrate a number of attacks that are vital to avoid in
security API design, but that have yet to be modelled using a formal analysis tool.
We seek to extract the basic ideas behind these attacks and package them into a
wish list of functionality for future research and tool development.

Key words: Security APIs, Formal Methods, Protocol Analysis,
Perfect Encryption, Information Leakage

1 Introduction

Security protocols have been designed, studied and attacked for over thirty
years. Today, formal analysis is becoming a popular tool for assisting in the
design process. However, the assumptions that formal tools make and the

1 The authors wish to acknowledge the generous funding of the CMI Institute and the Cecil
Renaud Educational and Charitable Trust.
2 Email: Mike.Bond@cl.cam.ac.uk
3 Email: Jolyon.Clulow@cl.cam.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Bond, Clulow

restrictions they put on the description and analysis of behaviour conspire to
limit their scope – preventing their application to harder protocol design prob-
lems of today. In particular, the design of security APIs as well as conventional
protocol design in constrained environments (such as within embedded sys-
tems) cannot benefit fully from the existing tools because of these impractical
assumptions and restrictions. While designers can achieve security through
systematic application of rules of thumb for fulfilling the assumptions, the
results tend to be over-engineered and impractical to deploy. Instead, we pro-
pose that the time has come to extend these tools to relax the assumptions
on the models they analyse.

We describe some well-known mistakes that need to be avoided in good
protocol and API designs, yet which cannot be reasoned about in the abstract
models used by formal tools. These mistakes are of particular significance
as they are regularly discovered within security APIs, but are illustrated for
simplicity with example security protocols.

We believe that formal reasoning about many of these lower-level attacks
is possible, and present this as a challenge for the formal methods community
to adapt and extend their tools, to assure their continued usage and eventual
widespread acceptance into the design process.

2 Analysing Protocols with Formal Methods

Numerous tools and techniques for formal analysis of security protocols exist;
they can be broadly split into model checkers, theorem provers and formal
logics.

• Model checkers explore a state space, examining methodically whether cer-
tain requirements hold in each state of the model. Some can also reason
about equivalence between state space models, or use mathematical tech-
niques to reason about entire sets of states simultaneously. Theoretically,
they can examine the entire state space and can give a similar assurance
of correctness as that provided by a theorem prover (in practise however,
the problems set by users are often too hard and defeat analysis, or are
deliberately simplified to ensure solubility).

• Theorem provers, in contrast, search at a higher level of abstraction for
chains of logic that constitute a compelling proof that a particular property
always holds. Alternatively, they may find a counter-example in the process.
Various proof search strategies are used, often based on the basic resolution
strategy proposed by Robinson [19].

• Finally, formal logics provide the user with notation and precise definitions
of properties, which help the user to perform intuitive reasoning more rig-
orously on paper.

The tools vary both in raw reasoning power and rigour. Some formal
tools have been designed for assurance – prizing most of all that any answer

2



Bond, Clulow

that they produce is truly correct; that no special cases or peculiar conditions
are missed by the tool (or any of its optimisations) that might affect the
validity of the answer. This is often reflected in the tool’s precise and pedantic
specification language. On the other hand, some tools focus upon efficient
searching methodologies and use powerful heuristics similar to AI strategies
to control their searches. Out of the dozens of existing tools, many have had
notable success aiding human analysis, and some have directly or indirectly
discovered new attacks.

In particular, Lowe had considerable success applying the FDR tool to
model security protocols, finding a previously unknown attack on the Needham-
Schroeder Public Key protocol [14]. The FDR tool reasons about refinement
properties between models based upon communicating sequential processes;
Lowe later built a high-level interface language, CASPER [15], for specifying
security protocols and their properties.

Meadows describes several type-confusion attacks against the Group Do-
main of Interpretation Protocol [17] that were found with the NRL protocol
analyser. One she describes as found automatically, whilst the other more
feasible variant was identified by a human during the course of the analysis.
Mitchell et al. used their own tool, Murφ, to analyse successfully a number
of classic protocols for known flaws. Following this, they analysed the secure
sockets layer (SSL) protocol, identifying a previously unknown ‘anomaly’ in
the version 3.0 specification [18].

Finally, there are reasoning logics such as the BAN logic [12]. Though
instrumental in the understanding and development of formal analysis of se-
curity protocols, the BAN logic itself has not been widely used to identify
flaws; its main role has been in retrospective analysis. Individual researchers
regularly use custom extensions and improved logics [13,1,20] in the protocol
design process.

It remains rare that vulnerabilities are found purely through automated
analysis, as most analysts are highly-skilled, and spot the flaw during the
process of formal specification. When the automated analysis phase does find
a new attack outright, there is usually a special circumstance: for example,
when the analysts are the tool creators, and their primary goal is to explore
the powers of their own tools, perhaps by experimenting on protocols of their
own design.

We explored the existing tools for security protocols analysis, applying
them to security APIs, initially just modelling known attacks rather than
searching for new ones. However, nearly every tool fell short in some category
of functionality – either they had difficulty ‘finding’ the attack, or it simply
could not be expressed. These attacks ranged in degrees of complexity, but
some of the most trivial and obvious weaknesses from the perspective of a
security API designer caused a remarkable amount of trouble.

3



Bond, Clulow

3 From Protocols to Security APIs

Security API analysis closely resembles the analysis of protocols. Consider a
cryptographic processor (imagine a PC in a safe) that is network-attached and
is used as a service by one or more users, quite similar in concept to a trusted
third-party in a security protocol. The device makes its functionality available
through an Application Programming Interface (API). Users can thus offload
their sensitive, and often computationally expensive security operations to a
dedicated, optimised device. This device may have additional benefits and
responsibilities not found in a normal PC, e.g. a cut-down operating system
hardened against attack, and special storage for cryptographic keys, possibly
in tamper protected memory. Indeed, international funds-transfer and credit
card infrastructures are based around devices such as these.

When a user participates in a protocol run, the user may make a num-
ber of individual calls to the security device to process the received message
and generate the response. We can consider these API interactions as runs of
the special protocol between the user and the trusted third-party device. This
underlying API will, in general, have finer granularity than the protocol it sup-
ports since interpreting a message and generating the response may involve
many cryptographic operations, each potentially encapsulated in a single API
call. Furthermore, the security device APIs are typically designed for flexi-
bility (the manufacturer of the device has economic incentives to maximise
market size and limit the development costs of associated with individual cus-
tomisation) – so one can thus construct a great many protocols from a given
set of API calls. A typical security API may have a few hundred calls, each pa-
rameterised, many of which could be expressed as a simple two-party protocol
between user and device.

The daunting size complexity of security APIs, coupled with the obvious
similarities with protocols, makes application of automated methods devel-
oped for protocols an attractive option. Indeed this is not a brand new idea:
Longley and Rigby described early work in 1992 using an automated tool
based on PROLOG to analyse security APIs of key management systems [23]
(it is only since 2000 that security APIs have been subjected to widespread
scrutiny). In fact, a surprising number of vulnerabilities have been discovered
in security APIs over the past decade [2,3,5,6,7,10], many of which form part of
mission critical, commercially important systems: attacks against ATM net-
works and banking infrastructures in these papers are good examples. With
the increasing commoditisation of security and security products, the need for
automated methods to verify the security of systems in the absence of true do-
main specialists is increased. Financial industries in particular would welcome
improved assurance. We are also observing a trend in security APIs toward
extensibility – users may develop their own calls which can be downloaded to
the device and added to the API. Again there is a need to verify that security
is not compromised by these extensions.

4



Bond, Clulow

In this paper, we seek to extract the basic ideas behind these attacks and
package them into a wish list of functionality for future tools – functionality
which we believe is not being sufficiently addressed by the current avenues of
development in protocols analysis tools.

4 Perfect Encryption

Is {X}K secure? The typical automated reasoning tool assumes so. There
is the hidden, albeit obvious, assumption that the cipher used is secure and
the key sufficiently long to prevent a brute force attack. However, perfect
encryption is not necessarily a reasonable assumption on many platforms.
DES lives on in many environments while AES is not yet as widely supported
as one might have hoped, particularly in small and low cost devices. In-
deed many embedded systems often still use even more lightweight ciphers
for specific applications, for instance, wireless car key-fobs where every bit
transmitted is expensive in power consumption. The problem of key length
is not limited to low cost devices: the PKCS #11 standard was recently
shown to not explicitly preclude the option of encrypting a secret key un-
der a weaker algorithm or shorter key, which would result in degraded secu-
rity [11]. Many legacy systems migrated from DES to 3DES without prop-
erly thinking through storage requirements for the longer keys. For exam-
ple, the double length key K = 〈KL, KR〉 would be commonly encrypted as
{K}KM = 〈{KL}KM , {KR}KM〉. Since there is no cryptographic binding be-
tween the two halves, one can easily cut and paste them. For example, an
attacker could create two keys 〈{KL}KM , {KL}KM〉 and 〈{KR}KM , {KR}KM〉.
Each key is effectively a single length key, and a brute force attack is thus sig-
nificantly easier. The ability to identify such issues through automated anal-
ysis of security APIs would be desirable. Extending existing tools to reason
about 3DES as 3 individual crypto operations would appear to be easy. It
seems that the challenge here is not to merely be able to reason but rather to
reason efficiently, as well as encoding the problem concisely and being easy to
use.

There are also attacks on these systems which can do better than a straight
attack against the cipher algorithm. Some require a data set that exhibits or
satisfies a given condition: for example, a set of keys with the same plaintext
encrypted under each, to effect a parallel key search. The use of parallelism in
an exhaustive search was described in [22]. Given many keys, each encrypting
the same text, it is possible to search for all keys in parallel (or simultaneously)
using an exhaustive key search machine. The key search machine iteratively
generates keys and then performs a trial encryption of the common plaintext.
It then compares the resulting ciphertext with the data set and searches for
a match (decryption can of course be used in the same way, in place of en-
cryption). In this process, it searches for many keys in parallel at the expense
of only a single DES operation. If searching for 2n keys, we can expect to

5



Bond, Clulow

encounter on average one in 255−n operations. This technique was used in
[6,5] against several security APIs.

We have encountered many APIs in the wild that are vulnerable to parallel
key searches through a number of different calls. For example, Figure 1 is a
simple protocol that encrypts a user supplied value X using an offset i applied
to the key.

A −→ S : X, {K}KM , i
S −→ A : {X}(K⊕i)

Fig. 1. The Encrypt using a Key Offset Protocol

It is trivial to generate the data set required to mount the attack. The
protocol shown in Figure 2 facilitates a user transmitting an encrypted message
to a target user with whom he does not share a key. This is achieved through
the use of a trusted server that has keys established with all the users. The
server accepts an encrypted message from the initiating user, decrypts the
message and then re-encrypts it for specified target user using the keys it
shares with both users. If there exist sufficiently many valid identities for the
target j an attacker can again easily generate the required data set.

A −→ S : {X}KAS , A, j
S −→ A : {X}KjS

Fig. 2. The Translate Protocol

This simple weakness is not limited to only APIs but also some established
protocols. The venerable Needham-Schroeder protocol shown in Figure 3 is
similarly vulnerable. Eve iteratively impersonates the identities of all possible
parties Aj. For each Aj Eve initiates a protocol run with the server S supplying
the same value X in place of the random nonce RA. The server responds with
{X, . . .}KAjS . Eve can now perform the parallel search offline to recover the

value of a KAjS.

A −→ S : A,B,RA

S −→ A : {RA, B,KAB, {KAB, A}KBS}KAS
A −→ B : {KAB}KBS
B −→ A : {RB}KAB
A −→ B : {RB − 1}KAB

Fig. 3. The Needham-Schroeder Protocol

Formal tools capable of analysing protocols and APIs under which the
necessary data could be obtained to perform such an attack would be use-

6



Bond, Clulow

E −→ S : Aj, B,X

S −→ E : {X,B,KAjB, {KAjB, A}KBS}KAjS
Fig. 4. Using the Needham-Schroeder Protocol to effect a parallel key search

ful. Alternatively, one could calculate a numerical bound which limits the
parameters of the system and thereby ensures security.

5 Information Leakage

Information leakage is usually thought of in the context of side-channel analy-
sis of physical devices engaged in security protocols. However protocols them-
selves may leak a small amount of information, perhaps a few bits or a frac-
tion of a bit, which if identified, can be recovered and accumulated through
repeated protocol runs (or sequences of API calls), eventually revealing an
entire secret, or bringing it within range of a brute-force search. There are
strong similarities between these channels and conventional side channels ex-
ploited during power analysis, timing or emissions attacks. However, a crucial
difference is that key material processed in cryptographic algorithms is often
processed iteratively, so observation of a characteristic may permit the identi-
fication of an explicit bit of the secret. Repetition is used in the attack process
to target other distinct bits of the key, or to reduce noise from the analysis. In
the case of information leakage through protocols, the correspondence between
the data leaked and the key bits of some secret may be much more complex.
A non-trivial algorithm may be required to convert the information revealed
about the secret into knowledge of the secret itself. A good example of this
is the game MasterMind (TM). One player choses a pattern of four coloured
pegs that he fixes. The second player tries in an iterative manner to guess the
pattern. With each guess, the first player tells the second player the number
of pegs of the correct colour in the correct place and the number of pegs of
the correct colour in the incorrect place. In effect, the second player is given
partial information about the secret. The player’s objective is to develop an
efficient strategy to turn this information into knowledge of the secret itself.
Incidentally, the strategy used in the decimalisation table attack [10,8] to ex-
tract the digits of a customer PIN from a bank security device is remarkably
similar to that of the MasterMind game.

In practice, common sources of leaked information are error conditions and
codes. These can be explicitly revealed through a message or indirectly re-
vealed through timing patterns indicating the premature halting or abnormal
execution of an operation. Bleichenbacher [25] and Manger [24] have both
proposed attacks on the various RSA padding schemes: in these protocols an
error response, or the timing of an error response leaks information about the
plaintext, allowing a chosen ciphertext attack on RSA. Often such a leak is
not visible or not explicitly stated during design process but becomes visible

7



Bond, Clulow

during coding or development. The attacker is often faced with the challenge
that sometimes it may be the case that we can readily determine that there
exists some form of information leakage but not be able to clearly identify
what information is being leaked nor how it can be exploited.

Another example lies in the ANSI X9.8 standard for encrypting PINs un-
der DES. The PIN is formatted into an 8 byte buffer with control information
and padding. This buffer is then exclusive-ORed with the customer’s personal
account number (PAN) before being encrypted under the DES key. We rep-
resent this as {P ⊕A}KB where K is the key, P the formatted PIN buffer and
A the PAN. Whenever the encrypted PIN is verified or re-encrypted under a
different zone key, the process is reversed. As an intermediate step the PIN
is extracted and and integrity check is applied. Since each digit of the PIN is
meant to be a decimal digit in the range 0 to 9, the check simply tests that
each hexadecimal PIN digit extracted from the decrypted buffer is less than
10. Should this test fail, it means that either the PAN, key or encrypted PIN
is incorrect or corrupted.

Essentially we can simplify this and represent it in a simple protocol that,
given a user specified value for the PAN (which we denote X), tests whether
the recovered PIN is decimal. For a single digit PIN, the protocol can be
described as follows.

A −→ B : X, {P ⊕ A}KB
B −→ A : (P ⊕ A)⊕X < 10

Fig. 5. The PIN integrity Check Protocol

It was not necessarily the implicit intention of the authors of the ANSI
X9.8 standard to create this protocol, but it results as a consequence. At first
glance, the integrity check seems innocent and benign enough, and indeed
perhaps a useful addition that detects unintended errors. However, with a
little thought it becomes obvious that repeated execution of this protocol with
different values of X quickly leads to the identification of the set {P, P ⊕ 1}.
This can clearly be seen from Table 6. A given value of P ⊕ A results in a
unique pattern of passes and fails.

Clearly a method that identifies potential leakages of information is re-
quired and some understanding of how this information might be used. Ac-
tually constructing an algorithm that assimilates the leaked information and
reconstructs the underlying secret might be lofty goal since this could require
considerable creativity. Perhaps a more realistic aim would be to identify the
rate at which information is lost and establish a bound on the security of the
protocol.

8



Bond, Clulow

P ⊕ A
0,1 2, 3 4, 5 6, 7 8, 9

0,1 Pass Pass Pass Pass Pass

2,3 Pass Pass Pass Pass Fail

4,5 Pass Pass Pass Pass Fail

X 6,7 Pass Pass Pass Pass Fail

8,9 Pass Fail Fail Fail Pass

A,B Fail Pass Fail Fail Pass

C,D Fail Fail Pass Fail Pass

E,F Fail Fail Fail Pass Pass

Fig. 6. Table identifying the PIN using the PIN integrity Check Protocol

6 Protecting Low-Entropy Data

Low entropy-data (weak secrets and/or guessable data) is a common target
of attack in fielded computer systems. Cryptographic protocols often have
to work with this vulnerable data – be it in conventional security protocol
interactions for authenticating principals with weak passwords, boot-strapping
strong session key agreement, or in larger systems with security concerns, for
instance interrogating an encrypted, anonymised database.

Formal automated reasoning about weak secrets is tentatively being in-
tegrated into our existing toolset. Lowe describes how FDR can reason ef-
fectively about “guessable secrets”, and describes analysis of three security
protocols which bootstrap from a weak secret [16]. Lowe considers the sce-
nario where the weak secret is used as a key and the “guessing” occurs offline.
We propose that the model can be extended to include:

• guessing attacks against weak secrets protected by strong keys (i.e., the
weak secrets as data),

• guessing attacks that allow for false positives or are based on statistical
information, and

• online guessing.

Furthermore, the applications of weak secrets analysed so far are restricted
to authentication and key-establishment – we are finding that weak secrets
manipulated by security APIs are much more vulnerable.

In [7,9], Bond describes several statistical attacks on customer PINs ma-
nipulated by Security APIs in bank computer systems. These four digit PINs
are stored in encrypted ‘PIN blocks’, and are certainly guessable secrets. The
attacks exploit known statistical characteristics of customer PINs introduced

9



Bond, Clulow

by a poorly-chosen PIN generation procedure becoming visible in the distri-
bution of encrypted data blocks themselves. It is the range of manipulations
that can happen to these weak secrets which presents the challenge for anal-
ysis. Not only can guesses against the weak secret be verified, but the secret
can have mathematical operations performed on it (e.g. addition of constants,
truncation), small quantities of known constants can be added to the set of
weak secrets, and must not permit compromise of the others. This richness of
manipulation is reminiscent of personal data stored in public databases.

Take for example, Anderson’s summary of problems with the release of
personal medical records to permit research: he describes attacks that can be
performed on database systems to discover some weak secret (for example, is
a person infected with HIV) [4]. It turns out that there are difficult trade-offs
between allowing legitimate research requests and preventing abuse. There has
also been substantial quantitative work done in the preservation of anonymity
in census data [21] (which is more rigidly structured than medical data), which
could be brought to bear.

A tough challenge will be to extend the work already done on guessable
passwords to develop a more generic framework for reasoning about informa-
tion flow through security protocols. New tools and techniques must be able
to cope with leakage that may be both necessary and acceptable, but still
provide assurance that the total rate of leakage cannot exceed some limits.

7 Conclusions

The formal study of security protocols has yielded many successes: from the
accurate definition and reasoning about key concepts, to secure and efficient
algorithms for authentication, key-establishment, and key-distribution . These
categories of problem have largely been solved. Promising new work is extend-
ing formal analysis to deal with ever more complex and specialist protocols
(e.g. for multi-party signature, or group key distribution), however there is
another direction in which they can extend, that we believe yields much more
practical value. The everyday problems involved in security API design, and in
re-inventing existing protocols in new constrained mobile environments present
exciting new challenges for tool makers and formal analysts. We believe that
tools that can begin to address the three challenges we have presented would
be invaluable to todays protocol and security API designers, as they face the
new security challenges of tomorrow’s mobile, ubiquitous and trusted comput-
ing.

10



Bond, Clulow

References

[1] M. Abadi, M. Tuttle “A semantics for a logic of authentication”, 10th ACM
Symposium on Principles of Distributed Computing, p. 201–216, ACM Press,
1991

[2] R. Anderson “Why Cryptosystems Fail”, Communications of the ACM vol 37
no 11 (November 1994), p. 32–40, 1994

[3] R. Anderson “Correctness of Crypto Transaction Sets”, 8th International
Workshop on Security Protocols, Cambridge, UK, April 2000

[4] R. Anderson “Security Engineering”, Wiley, 2001

[5] M. Bond, R. Anderson, “API Level Attacks on Embedded Systems”, IEEE
Computer Magazine Oct 2001, p. 67–75

[6] M. Bond “Attacks on Cryptoprocessor Transaction Sets”, CHES 2001, Springer
LNCS 2162, p. 220–234

[7] M. Bond “Understanding Security APIs”, Phd. Thesis, University of Cambridge
http://www.cl.cam.ac.uk/~mkb23/research.html, 2004

[8] M. Bond, P. Zielinski “Decimalisation Table Attacks for PIN Cracking”,
University of Cambridge Computer Laboratory Technical Report TR-560, Jan
2003

[9] M. Bond, J. Clulow “Encrypted? Randomised? Compromised? (When
Cryptographically Secured Data is not Secure)”, Workshop on Cryptographic
Algorithms and their Uses, 2004 (to appear)

[10] J. Clulow “The Design and Analysis of Cryptographic APIs”, MSc. Dissertation,
University of Natal, South Africa, http://www.cl.cam.ac.uk/~jc407/ , 2003

[11] J. Clulow, “On the Security of PKCS#11”, CHES Workshop 2003, Cologne,
Germany, LNCS 2779 pp. 411–425

[12] M. Burrows, M.Abadi, R. Needham, “A Logic of Authentication”, ACM
Transactions on Computer Systems, 1990, pp. 18–36

[13] L. Gong, R. Needham, R. Yahalom “Reasoning about belief in cryptographic
protocols”, IEEE Symposium on Security and Privacy, p. 234–248, IEEE
Computer Society Press, 1990

[14] G. Lowe “Breaking and fixing the Needham-Schroeder public key protocol using
FDR” Tools and Algorithms for the Construction and Analysis of Systems, p.
147–166, Springer-Verlag, 1996

[15] G. Lowe “Casper: A compiler for the analysis of security protocols”, 10th IEEE
Computer Security Foundations Workshop, p. 31–43, IEEE Computer Society
Press, June 1997

11

http://www.cl.cam.ac.uk/~mkb23/research.html
http://www.cl.cam.ac.uk/~jc407/


Bond, Clulow

[16] G. Lowe “Analysing Protocols Subject to Guessing Attacks”, Workshop on
Issues in the Theory of Security (WITS), 2002

[17] C.Meadows “A Procedure for Verifying Security Against Type Confusion
Attacks.” Proceedings of the 16th IEEE Computer Security Foundations
Workshop, IEEE Computer Society Press, June 2003

[18] J.Mitchell, V.Shmatikov, U.Stern “Finite-state analysis of SSL 3.0”, 7th
USENIX Security Symposium, 1998

[19] J. Robinson, “A machine-oriented logic based on the resolution principle”,
Journal of the ACM, 12(1) p. 23–41, 1965

[20] P. Syverson, P. van Oorschot “On unifying some cryptographic protocol logics”,
IEE Symposium on Security and Privacy, p. 14–28, IEEE Computer Society
Press, 1994

[21] American Statistical Association Privacy, Confidentiality and Data Security
Website http://www.amstat.org/comm/cmtepc/index.cfm

[22] Electronic Frontier Foundation, “Cracking DES:Secrets of Encryption Research,
Wiretap Politics & Chip Design”, O’ Reilly, 1998

[23] D. Longley, S. Rigby, “An Automatic Search for Security Flaws in Key
Management Schemes”, Computers and Security, March 1992, vol 11, pp 75–89

[24] J. Manger, “A Chosen Ciphertext Attack on RSA Optimal Asymmetric
Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0”, Proceedings
of the 21st Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag, pp 230–238, 2001

[25] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1”, Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology,Springer-
Verlag, pp 1–12, 1998

12

http://www.amstat.org/comm/cmtepc/index.cfm

	Introduction
	Analysing Protocols with Formal Methods
	From Protocols to Security APIs
	Perfect Encryption
	Information Leakage
	Protecting Low-Entropy Data
	Conclusions
	References

