
Chewing on the 0xDEADBEEF
(redacted 26th March ‘08)

Mike Bond
10th August ‘07



Why redact this talk?
• Surely the crooks know this stuff already? Well maybe not, this is 

not crooks we are up against, just amateur hackers who want to 
cheat at games (little money in cheating at FPS yet), and its 
probably not illegal.

• True, Joint Ops is already suffering from cheats, and almost dead, 
but I don’t want to be putting the final nail in the coffin on what was 
an exceptionally good game in its time.

• Another 6 months or so and there should be no harm in releasing 
full detail of this talk.

• Some redaction in the screenshots was done to protect privacy of
testers (and unwitting testers)

• Any bona fide researchers in game cheating/network effects 
are welcome to take a copy of the full talk, plus source code 
etc, so long as they can satisfy me it will be put to good use. 
Email Mike.Bond@cl.cam.ac.uk, Phone +44 7890 171913



The 0xDEADBEEF



Contents

This work discusses reverse engineering and 
cryptanalysis of the encrypted data packets 
transmitted by an online multiplayer tactical 
shooter computer game “Joint Operations”.

• How it does the encryption
• How I cracked it
• Sturgeon’s Razor
• What if?
• Future Work



Packet “Encryption” Overview

REDACTED



Henry Decrypt
Packets longer than X bytes encoded as follows:

Packets less than X bytes with X

REDACTED



Main Decrypt Routine

• Takes null terminated array (usually ASCII 
string) as key input

• Always discards first byte without use
• Consists of key schedule derivation plus four 

base routines, all operating with byte-wise 
modulo addition
– first quadratic equation
– second quadratic equation
– conditional string reverse (diffusion!)
– Vigenère cipher



Main Decrypt Routine

REDACTED



decrypt_mask2
void decrypt_mask2(ref byte[] message, UInt32 len,ref UInt32[] keyschedule)

{
<snip>
}

nb. code looks weird because it is trans-literated from dissasembly

REDACTED



decrypt_mask1
void decrypt_mask1(ref byte[] message, UInt32 len, UInt32 magic, UInt32 k3)

{
<snip>
}

nb. code looks weird because it is trans-literated from dissasembly

REDACTED



decrypt_loopy
void decloopy(ref byte[] message, UInt32 len, byte[] key)

{
<snip>

}

nb. code looks weird because it is trans-literated from dissasembly

REDACTED



Three Doors

Behind one is a car, behind one freedom, and behind the other,
certain death! Pick a door. Now I take away a door. Do you
change your mind, or stick with your door?

Cryptanalysis
Static

Reverse
Engineering

Debugging



How I cracked it

1. intercepted packets using Ethereal: noted 
apparent encryption

2. created chosen chat messages, analysed by 
length of packet: detected individual packets 
corresponding to chat message

3. took differential between chosen plaintexts 
‘aaaaaaaaaaa’ and ‘bbbbbbbbbb’, looking for 
evidence of stream cipher

4. stream cipher theory validated, began reverse 
engineering to locate stream cipher



How I cracked it (2)

5. no evidence of stream cipher from examining 
XOR calls

6. worked upwards from the UDP sendto system 
call, found static hard-coded keys at 6 layers 
up (later henry at 3 layers also)

7. from static keys located crypto, discovered 
stream combined using byte-level addition

8. reverse engineered crypto algorithms (but not 
their calling structure)



How I cracked it (3)

9. studied packet ciphertexts and 
differentials between packets looking for 
evidence of crypto algorithm identified

10. found good evidence, but also evidence 
of another algorithm

11. went back looking and found “henry”
12. implemented decryption of henry



How I cracked it (4)

13. implemented decryption using static hard-
coded key; by luck applying XXX yielded 
success.. a low entropy header

14. analysed packets looking for size and meaning 
of header

15. analysed differentials after first decrypt, looking 
for second decrypt

16. after much thought concluded second decrypt 
was indeed same algorithm, starting with XXX



How I cracked it (5)

17. Upgraded analysis tool to crack final key using 
chosen plaintext from chat messages.

18. Cracking algorithm uses brute-force to crack 
quadratic-equation based keys

19. calulcates optimal Vignere cipher key using a 
tuned fitness function 



My Analysis Tool



My Analysis Tool (2)



What if?

• Suppose they’d used stronger key stream generator 
based on proper crypto algorithm (e.g. 3DES)?
– Easier. Only need to reverse engineer to identify algorithm, not

to re-implement
– Easier. Crypto with proper diffusion characteristics makes it 

easier to determine when you have got it right. Still stuck with
95% accurate crypto reimplementations which occasionally get a 
byte wrong

– Easier to locate in disassembly. Look for crypto-code 
characteristics

• Supose they changed key every packet instead of every 
session?
– Much easier to exhaust key space of weak cipher by sending a 

repeated message under many different keys



Sturgeon’s Razor

• My previous reverse-engineering rules
– do what you can
– give everything a name

• Occam and Sturgeon together…
– “90% of everything is crap”
– “All things being equal, the simplest explanation tends 

to be the best one." 

• Yields the new rules (used when explaining 
weird function behaviour) :
– “the simplest explanation is that its just a load of crap”



Future Work

• This work just a pre-requisite to experiments on “Neo-
Tactics”

• I want to find out how the update rates of players in-
game vary. You have 150 players in game, but you only 
have 600 bytes of data in your packet. What do you 
send?
– Does perception of unfairness/cheating correspond to real 

bandwidth problems, or inadequacies/anomalies in use of 
available bandwidth?

• This work will also enable (study of) many sorts of 
undetectable cheating based on packet 
interception/analysis/rewriting
– What sorts of hack are achievable if you can mess with the 

packets in tactical shooters? I hope to make a taxonomy.



Working Lag Analysis Tool

Hi res picture: see http://www.cl.cam.ac.uk/~mkb23/jopsdec/lag1-censor.png



Working Lag Analysis Tool (2)

Hi res picture: see http://www.cl.cam.ac.uk/~mkb23/jopsdec/lag2-censor.png



Working Lag Analysis Tool (3)

Hi res picture: see http://www.cl.cam.ac.uk/~mkb23/jopsdec/lag3-censor.png


