A Monster Emerges from the GChrysalis

(Experiences reverse-engineering the Luna GA3)

Mike Bond

2.8 UNIVERSITY OF Computer Laboratory
P CAMBRIDGE

Computer Laboratory

10th February 2004

Security API attacks
Introducing the Luna CA3
Reverse engineering with IDA

The cloning protocol

— Stage 1: Finding 1t

— Stage 2: Understanding it

— Stage 3: Breaking it
Implementing host side interface
Lessons learned

This was a team effort!

Many many thanks to:

— Steven Murdoch
— Dan Cvrcek

Also thanks to:
— Richard Clayton, IH, Stephen Lewis, Jolyon Clulow

— and many more...

Whatis a Security APl ?

A command set that uses cryptography to control
processing of and access to sensitive data,
according to a certain policy

I/0O Devs
Network

Security API

security APl Attacks

APIs for HSMs have evolved to support more
and more transactions and sophisticated
features — but they are getting too complex now

Use the permitted commands of the interface in
an unusual sequence to trick a device into
revealing secret key material

Are simpler, quicker and more effective than
going in by the ‘front door’?

Or are they?

U->C PAN

C—>U { PAN }..
U->C : { PAN }. ,
C—>U : { PAN },n;
TMK/PIN » WK

{ PMK1l }

]

ZCMK I

4,‘ TMK_ T

L0

(RAND)

LB

H (CLEAR)

Sm

et of Data Key Parfs] Data Key Part A | |Data Key Part BHet of Exporter Key Parﬁ_‘ txporter Key Part)Hixporter Key Part \f
| I
T

10a)

| Exporter Key XY |

|Test Pattern 0| | Set of Data Keys "’_‘ | Data Key A*B | lSet of Exporter Keys._’_‘
| |

I
| |
| |
| |
| |
| |
| |
| |
: |
3 | | I
| | EXPORT | | EX]EVQRI
| |
| | -
| Set of Test Vectors "’_‘ : | Set of Test Vectors "’_‘ :]51><|ported Valuable Key Materlﬂ
! | | |
I | L |
| | |
| |
v | |
| MIMCRACK H |
|
v |
| Data Key Part A | I
¢ |
|
| Data Key A®B | |
|
|
h 4 |
| MIMCRACK |
|
A 4
| Exporter Key Part X |
| Exporter X*Y |

\ 4
| DECRYPT |

| Valuable Key Material "‘
|

The Luna CA3

PCMCIA token, for secure storage of private
keys for Certification Authorities

Manufactured by Chrysalis-ITS (Toronto),
acquired by Rainbow, aquired by SafeNet

Became popular during the rise of PKIs 1n the
dot com boom (Verisign exclusively uses
Chrysalis kit for key storage)

Uses the PKCS#11 API (through an internal
proprietary ‘Luna APT’)

Luna CA3 - Front Vi

Luna Dock

The Cloning Protocol

e Used for backup and availability

e Initialise a new token into the same domain
(you need the RED key)

e LLog on to source and destination tokens (with
BLUE security officer key)

e Select an object and call
CA_ClonePrivateKey to transfer
between source and destination. The devices
exchange public keys then set up a session
key for the transfer.

Luna CA3 - Pin Entry Device (PED)

Luna CA3 - Datakeys

Primary Goal

Develop a way to extract all PKCS#11 keys
in the clear from the Luna token, with
the co-operation of the security officer

Break customer lock-1n — help the market
Learn about internal HSM architecture

Find implementation faults (buffer overflows?)
Find new Security API attacks?

Learn useful skills along the way
— Reverse-engineering
— Assembler

— Particular disassembly tools

Open up the card
Reverse-engineer the flash chip
Discover the cloning protocol
Extract device keys

Use keys to impersonate token in cloning
protocol

stage 1: Finding the Protocol

Get the ARM code

Get a reverse engineering tool
Familiarise and Mark-up ARM code
Identity Command Despatcher
Annotate Commands

Intercept and Decode PCMCIA Bus

Locate and Decode Cloning Protocol

Luna CA3 - Depackaged

'I,.msun { t}.&h .l.‘.‘.‘.

LRI RL ALY

T s

L R R L LLLLLLL LT

I|rr||||||||ln+ut\'

T

FRLLLI LRI

Luna CA3 - Depackaged
Flash

)
#

'
:

-
- -

e

LG TR TR

TG

[Pl

-
d

C38

EL)

ERRaRRRRERANRERARRENEE !l!‘!%‘t‘t‘tl!Illll‘t!ttltllit!t!tll l

C
"

O HTHT gy

StrongARM
Flash 2

The Luna Flash File - AM29.BIN

 Two 1/2MB ftlash chips, holding halt words
— ~300KB code
— ~500KB data
— ~200KB blank

* Complexity

— 1035 subroutines

— ~1700 pages of assembler (on this screen)

IDA - The Interactive Disassembier

 Made by ‘Datarescue’ — one man consultant
went commercial with the tool he developed
for himself. Cost ~$700 for 2 year licence.

e Beautiful windows GUI and navigation
system. Rename functions and variable
names on-the-fly and the new information
propagates through the disassembly listing

Fle Edt Jump Search Yiew Options indows Help

e~ (2@ N |- #-vSHK-=~ 7| FRR|| =& 5|2 &Y ~| vl| #
"
B -- N X 2 2000 O AR | [7| [B @ | [¥ & |
n do i
Rom-ooacsrrs Wy o, o — S I A | 8
2 § 42 = i
ROM: BOOC2FFC STRE RO, [SP,H-HI! 7 coovnnnn. make space on stack [des_key_pem_maybe DIEdean
ROM:606C3000 ; STACKFRAHE —0x18B0 D pattern_1 O00EIN
ROH: 880C3008 HOU RB, HBx52 ; "R* D patterm 2 000F9342
STRB Re, [sp,ufl] A sNowlsTheTimeFoidllZ 000F3950
Moy RB, #8x55 ; 0" A 212345678901 2345679901 2 O00F3478
STRB Ro, [sP,ul] A 512345678501 234567890 O00FRB0C
it Ri-Rimee . W A sEncryptThisSentence_ 000F3BE0
R ‘[‘ﬁ:;”'.'l] i A sEncuptThisSentenc_0 O00FSBE4
ROH: B8OC361C STRB RO, ISP, 4H] A aToBeSigned DDOF9EE4
ROH: B00C3020 HOY RO, #6x20 ; ° - D bptes 64 Q00FSC34
ROH:BOBC3 024 STRB RA, [SP,u#f] D valeq 3 dword 000FSC74
ROM:BOOC3028 MOy RO, #8x43 ; "C° D valeq 0 dword 000F9C73
ROM:000C302C STRB Ra, [sP,Hl] D valeq 3 dwordz 000FA01C
ROM=DOMIA360 il RO Mgl ;. Bk | A a12385678901 2245678 0 000FSD20
BOU-008C3 SIRD RO, [SP.Hll] | D test_vect 000F3D74
RO 60C3 038 Moy R2, #1 D by 0 QO0FaDEE
ROM: 80OC303C STRB R2, [SP,#0xC] ; -Ox18A4 mode_1_or_2 = =
RO : 80BC3 048 Hou R2, SP ; -Bx18BB source and dest the same... but this is ok D byes 8.2 il
RO AOC3 04k HMoU R1, SP ; —Bx18B0 A shing_projrev_snd_weak_key_table O00F3Fge
ROM: BOOC3 048 ADD RO, SP, #8 ; —0x18n8 A Al unavenRetaToken NNNFAFRS 5A]
ROM: BOBC304C HOY R3, #2 | I | =
ROH:B888C3 058 BL C5_do_BlockEncrypt_CBC ; input R8=&kinit_struct, Ri=&srcdata,R2=&destdata,input R3=amt, output RB8=a Line 1264 of 1375
ROM: 00OC3 054 Hoy RO, RE
ROM: BOOC3058 CHP 8, RSant " Strings win 0O
ROM:88BC3 050 BCS r_skip ; hmmmm. ... this next loop is interesting
RO 80C3 060 Address Length iz Shring s]
ROM:B0OCIB60 1oop ; CODE XREF: C4 crypto_action_mechsus+3181j ©rROM:OD.. 00000020 € Undefined instruction, PC=0x%
:‘* ROM: 00BC3060 LDRB R1, [R11src,RO] ; read bytes from R11... source address w0 ROM:00L. 00000014 C Prefetch abort, PC=0u\n
1 ROM:00OC3064 suB R3, RO, R8 ; "' ROM:D0.. 00000035 € Data abort, PC=0x%s, [PCJ=Ok%
: RO BOC3 068 LDRE R2, [SP,R3] 5 %0R with encrypted test pattern... -8xz1B8 . 00000006 C 1RO.4n
y ROM:pBOC3B6C EOR R1, R1, R2 i e o Flgn
' ROM:B00C3078 STRB R1, [R9,RO] ; weite to R9 : -
! ROH:epOC307H ADD RO, RO, #1 ; increment storage offset... 00000007 € E ek
' ROM:@8PBC3078 CHP RO, R5ant . 00000011 C Mat flash Dua\n
L _ RON:BREC3ETC BCC loop 0oooonog C B CRY
ROM:@886C3 080 .t ROM:00... 00000015 C Irwealid command %d.\n
ROM:B00C3088 crr_skip ; CODE XREF: Gh_crypto_action_mechsu+2F8Tj 0 ROM:OO. 0000O0SE C Hardware interface revision %d.
ROM:ABRGS 0RE, ADD SPy SRk "¢ ROM:00.. 00000010 C ErosingFlashin
BON:09BC308Y, STRCKERANE: = Bx1BAR .. 00000017 cC Copying nev firmware. \n
skip_bruno ; CODE XREF: C4_crypto_action_mechsws2901j Ut b (Ekeculingmainimagein
* ROM:-8P6C3 034 LDRE R®, [SP,#5] 00000018 C CRC DxZx s incorrect \n
ROM:000C3 088 CHP RO, #0 - 00000007 C Haltn
ROM:BBBC3BEC BHE on_way_to_end_function 00000024 C Checking that all flash is erased
0e8c3098 GHP R10_flag2, #0 . . 00000016 C Frosessing commands.in
gggggg; :153 ;:Jﬁl;g;;ziendiFunCtlnn . 00Iooo1s © Erase request received.\n
, ~
SHEABIE i RO, RO . uu_nuu@? C Eulnflrmahnnllmenul n -—
ROK: 886C3 048 BL C2_crypto_action_mechsw_sub1 ; strangely.... seems to be to do with HefN processing = =
ROM: B0OC30A% Hoy R7, RO
on_way_to_end Function ; CODE XREF: Ch_crypto_action mechsu+288Tj
ROM:BBOC30AB ; Ch4_crypto_action_mechsw+328Tj
ROM: BABC3 NG ; C4_crypto_action mechsw+336Tj
ROM: 888C3 0A8 CHP R7, #8
BME near_end_function
CHP R9, Rédest
BEQ near_end_function ; if addresses are the same... skip @
>
o ; L

ALl B 00043060 D00C3060: C4_crypho_ackion_mechsw+2FC

Conventional wisdom 1s one rule...

* Figure everything out for yourself!

My wisdom...

e If you don’t know what to do,
instead, do what you can.

e Give everything a name.

if you get stuck..
http://www.babycakesinternational.com/100topbabnam.html

or use movies, friends, books

Make every letter in a name count!
C5D2 _BLEV_JANE_do_something subl

Group C1 type functions into larger clumps
Pay special attention to most called functions
memcpy 327 calls

Start propagating type information
— (memcpy arg 2 is length, args 0 and 1 pointers)

e Search for the biggest case switches...
— 45 switch statements 1n total
— ranging between 0x17 and 0x5 ways
— no 1dea what the command encoding was

ADDLS PC, PC, RO, #2 ; switch 0xC ways

* Two pages from back of policy document
listing the Luna API commands categorised
by module was all we had.

5}
g

e

/)

Overview — Luna CA3 Security Policies

APPENDIX C. Session And Login States Required For Luna Token

Commands

Document #802509 v2.00

Command ~
To
Token

No
Session
Open

Session
Open, No
Login

so
Logged
Oon

User
Logged
On

Token Main Module 1
LUNA_ZEROIZE

‘4

LUNA_INIT_TOKEN

A_GET

N

NA_GET_USV

NA_SET TPV

IA_FW_UPDATE

[A_CONFIGURE_SF

<

sion Manager Commands.

A_OPEN_ACCESS 7.}

IA_CLEAN_ACCESS

P

IA_CLOSE ACCESS

UNA_GET_ALL_ACCESSES

IA_OPEN_SESSION

IA_CLOSE_SESSION

A_CLOSE_ALL_SESSIONS

NA_GET_SESSION_INFO 57

NA_EXTRACT CONTEXTS

IA_INSERT _CONTEXT

er Module Commands 4

NA_GET_USER_LIST ~

\A_GET_USER_NAME

A_LOGIN ap

\A_LOGOUT oE

A_SET_PIN

VA_INIT_PIN

IA_CREATE_USER

LUNA_DELETE USER

Object Management Moglule R
LUNA_CREATE, OBJEC% -

LUNA_COPY_OBJECT

LUNA_DESTROV_OBJEGT

[[UNA_GET_OBJECT SRE /7

[LUNA_GET_ATTRIBUTE,_VALUE -

LUNA_GET_ATTRIBUTE, LENGTH

LUNA_MODIFY_OBJECT

LUNA_FIND_OBJECTS 167

Random Number Generator Module 2

LUNA_GET_RANDOM

LUNA_SEED_RANDOM

Key Management Module

Nz O

q RiaSwrteq M
LUNA_GENERATE KEY 17 1

LUNA_GENERATE_KEY W_VALUE 1

LUNA_GENERATE_KEY _PAIR

LUNA_WRAP_KEY

LUNA_UNWRAP_KEY

LUNA_UNWRAP_KEY_W_VALUE

LUNA_DERIVE_KEY

LUNA_DERIVE_KEY_W_VALUE

WML et gve r._,_‘)

Unrestricted

B
Chrysalis-1T5

5}
g
e

74 | LUNA_DELETE USER

Overview — Luna CA3 Security Policies

Document #802509 v2.00

Command ~
To
Token

No
Session
Open

Session
Open, No
Login

User
Logged
On

Token Module 1

LUNA_ZEROIZE

‘4

IA_INIT_TOKEN

_GET

N

_GET USV

A_SET_TPV

_ FW_UPDATE

L
LUNA_CONFIGURE_SF

<

Session Manager Commands

) [LUNA_OPEN_ACCESS 7.}

¢ | LUNA_CLEAN_ACCESS

P

4 [LUNA_CLOSE ‘ACCESS

L[UNA_GET_ALL_ACCESSES

IA_CLOSE_SESSION

o [(LO8
11 [TUNA_OPEN_SESSION
4 o

A_CLOSE_ALL_SESSIONS

GET_SESSION_INFO 57

A_EXTRACT_CONTEXTS

¢ | LUNA_INSERT _CONTEXT

| User Modute Commands Q.
1 'CUNA_GET_USER_LIST ~

\A_GET_USER_NAME

A_LOGIN ap

\A_LOGOUT oE

A_SET_PIN

VA_INIT_PIN

IA_CREATE_USER

Object Management Mogule R
© [[LUNA_CREATE OBJEC% -

¢ | LUNA_COPY_OBJECT

1~ [[LUNA_DESTROY_OBJEGT

" OBJECT_SWE 7

m

GET_ATTRIBUTE_VALUE -

IA_GET_ATTRIBUTE; LENGTH

+ [LUNA_MODIFY_OBJECT

LUNA_FIND_OBJECTS 167

Random Number Generator Module 2

.+ [LUNA_GET_RANDOM

-+ [LUNA_SEED_RANDOM

Key Management Module

Nz O

q RiaSwrteq M
LUNA_GENERATE_KEY 17 1

LUNA_GENERATE_KEY W_VALUE 1

LUNA_GENERATE_KEY _PAIR

3| LUNA_WRAP_KEY

3 LUNA_UNWRAP_KEY

4c | LUNA_UNWRAP _KEY W_VALUE

4| [LUNA_DERIVE KEY

42 [_LUNA_DERIVE_KEY W _VALUE

WML et gve r._,_‘)

Unrestricted

.

Chrysalis-1T5

The Command Despatcher

Raw command ID

(single byte)

45 switch ¢
statements
in total.. Cl 30SER_MODULE DESPATCHER_LUCY Switen Oxc
witc xC ways
Cl_xlate_cmd

Switch 0x9 ways

L3 Cl LUCY moduleA

Cl_30SER_BSW_KEYMANAGE

L3_Cl1_MAIN_MODULE

L3_Cl1_CRYPTO_MODULE

L3_Cl_USER_MODULE

Cl1_RANDOM_NUM_GEN_MODULE

L3_Cl_OBJECT_MANGER

Switch 0x8

Cl_SESSTION_MGR_MODULE

Switch 0x7

ways

ways

SOURCE

TARGET

LUNA_FIND_OBJECTS
LUNA_GET (SLOT 0xE)
LUNA_GET (SLOT 0xF)
LUNA_CLONE_AS_SOURCE
LUNA_GET (SLOT 0xE)

LUNA_FIND_OBJECTS
LUNA_DESTROY_OBJECT
LUNA_FIND_OBJECTS
LUNA_GET (SLOT 0xE)
LUNA_GENERATE_KEY
LUNA_SET_UP_MASKING_KEY
LUNA_DESTROY_OBJECT
LUNA_GENERATE_KEY_W_VALUE
LUNA_CLONE_AS_TARGET_INIT
LUNA_CLONE_AS_TARGET
LUNA_GET (SLOT 0xE)

Luna Key Gloning Protocol

SOURCE

LUNA_GET (SLOT OxF)

{ K } Kchrys

LUNA_CLONE_AS_SOURCE

=1
KS / Kchrys

K,=N_ &N 6K &C

{ 14 NT S
4/=/
|

r Nglhg
|

|
w
|
|

TARGET

LUNA_CLONE_AS TARGET INIT

{ K } Kchrys

LUNA_CLONE_AS TARGET

K,=N_ &N 8K &C

stage 2 : Understanding the Protocol

 We knew what the cloning routine did, but
not where the key material came from

* The encrypted key material came from
LEELA, the decryption key from JADE

 We could see encryption and decryption, but
not exactly how... had to mark-up the crypto
routines called by the cloning code
— Identify which algorithms are used
— Identify algorithm parameters, key lengths
— What about IVs?

The Luna Mysteries

e To understand the protocols we needed to

discover the purpose of some puzzling
functions

— C4_crypto_action_mechsw
— LEELA

— JADE

— ‘EDAFLU’

G4_crypto_action_mechsw

e Seemed to be the central function for symmetric

crypto — called by...
C25_C_ACTION_O_ENCRYPT
C27_C_ACTION_O_DECRYPT

e (alled c5_do_Blockencrypt_cic , and called lots of
crypto-like routines, but the two seemed unlinked.

e Evidence of software DES was found (key-
schedule), but the block encrypt function called
HIFN (a DES accelerator manufacturer) 10
functions. Yet there was no HIFN chip 1n the token.
How and where was the DES done?

G4_crypto_action_mechsw (2)

Solution: a well hidden table jump inside the CBC
loop, once discovered made the code make sense

There were 3 function tables — one for preparing
key schedule, one for encrypt and one for decrypt

DES key schedule was calculated in software, then
uploaded 1nto accelerator chip (this upload was
mistaken for the full DES calculation)

Why was DES done as a composite in H/W and
S/W? To claim ‘hardware accelerated DES 1n
marketing brochure’? Space was too limited in

FPGA?

Hunting LEELA

Official name: C68 LEELA load and
C35 LEELA save

The token private key came from LEELA slot OxF, but
where did the slot live? The code used memcpy to
pluck it from unusual address, but we only had rough
1dea of the memory map. Could they be special secure
memory inside FPGA?

Eventually: discovered that LEELA slot save code
looked like flash file update code: became convinced
that slots lived on 1MB flash image.

Wrote script to scan flash for linked list of pointers as

theorised from reader code. Success! Found LEELA
slots at O0x88000 in AM29.BIN

 JADE, officially:

Cl2_JADE_prep_cryptolstruct_entryA
C4_JADE_entryB

e JADE takes no arguments, and returns a
cryptolstruct , containing a DES key or a
3DES key used for decrypting the contents of
a LEELA slot.

* Problem: JADE walks through data structure
in RAM to find keys — how can we locate
code that set up keys in data structure?

Finding JADE (2}

e Solutions:

— Take a guess. Look in login routines — maybe JADE keys come from
physical datakeys

— Observe class of error code in JADE functions, and search for
functions exhibiting similar error codes

e Success: C3_LOGINOUT_setup_auth_contexts_JADE
was found. In fact, key material in JADE slots came
from a decrypted version of the data structure inside

a LEELA slot.

e But where did the encryption key come from? The
datakey? And if so, which?

LEELA slot 0x1D

|
|
|
|
|
XOT | ‘ ‘
|
|
|
|

PIN PIN PIN PIN PIN
PED Boundary
—» i
“unnecessary processing”
¥ named OxDEADBEEF
Repeat
<5 MD5

» DES/3DES

v
e Problem: So how can the keys be stored in
encrypted form when the token 1s uninitialised? —
there 1s no blue key

The Luna PED Protocol

PED talks to token be reusing high address lines
from PCMCIA spec as bidirection communications
channels

Three lines: RESET, DATA, and DATA_VAL

However, DATA_VALID was clocked in an
unpredictable erratic way. Reason: Luna token
implements serial communications protocol in
software, and cycle time of loop was data
dependent.

Used a datakey reader to make an independent
observation of data on keys, and try to observe this
on the bus.

The ‘EDAFLU’ Story

e During initialisation of a token, there 1s a special
requirement: insert the mystery ‘grey key’

e Grey key not mentioned at all in documentation, or
release notes

e Contained 64 bytes, mainly zeroes, save for one
interesting constant... more OXDEADBEEF?

00 00 01 00 OO0 30 00 OO OO0 OO OO 00 OO0 00 00
00 00 00 00 OO0 OO 00O OO OO0 OO0 OO 00 OO0 00 00
00 00 01 00 OO0 00O 00 OO OO0 OO OO 00 OO0 00 00
00 00 00 00 65 64 61 66 6C 75 00 74 00 00 0O

The ‘EDAFLU’ Story (2)

00 00 01 00 00 30 00O OO OO0 OO OO OO OO 0O 0O
00 00 00 00 00 0O OO OO OO0 OO OO OO OO 00 00
00 00 01 00 00 0O OO OO OO0 OO OO OO OO0 00 00
00 00 00 00 65 64 61 66 ©C 75 00 74 00 00 0O

e da £f ault)\O

Datakey reader had wrong half-word endian!

Extracting the Token Private Key

LEELA slot contained encrypted private key of
token, in two forms, encrypted under grey key and
under current blue key.

Key material from data key retrieved
JADE decrypts slot and puts clear keys in RAM

We re-implemented decryption of LEELA slot
using hash of ‘default’ key.

Unfortunately...FAILURE

Need to emulate ARM code and try again, or switch
to another plan

Find the protocol in the code stack

Familiarisation and mark-up of PKCS#11
DLL code in CRYST201.DLL

Follow data flow 1nside DLL

Intercept and change data tlow
A change of plan: CVKs

The Luna Code Stack

Luna Enabler 163KB Application
CRYST201.DLL 287KB Library Code
LUNACRO LUNANT LUNAVPN . .
Device Drivers

Luna Controller
~256KRB Hardware

Luna Dock
~256KB

Luna CAS3

1MB

Inside CRYST201.DLL

Usual PKCS#11 entry points exported, but some extra

vendor-specific ones of interest

CA_SetCloningDomain
CA_SetTokenCertificateSignature
CA_ClonePrivateKey (and many more..)

DLL written in mix of C++ and C. PKCS#11 entry points
called C++ methods of object hierarhcy representing
diffﬁrent mOdeIS Of Luna tOken (Luna 1, Luna 2, Luna CA3, Luna RA etc.)

These methods called ‘SOLAR API’, which
corresponded closely (but not exactly) to Luna API
intercepted on PCMCIA bus. SOLAR API called C stub
functions, which called I/0 methods of C++ class
hierarchy representing different device drivers.

To summarise: a real mess inside

C++

Inside CRYST201.DLL

CA_SetTokenCertificateSignature

PKCS#11 API

AUSTIN TOKENIO

ETHAN GOAT NIOBE FISH DOZER WORM

Write DWORD Write block Send cmd Get data buf
WORM SKUNK GOAT (a-b) F'ISH (a-b) CAT ZAK
DRV40 DRVOO DRV20 DRVO08 DRV04 DRV48

get numsl get tokpr get insct read wind execute reset

Customer Verification Keys

SOURCE TARGET

LUNA_CLONE_AS TARGET INIT
LUNA_GET (SLOT OxF) = _AS_ —

LUNA_CLONE_AS_SOURCE

K—l

2 {KT}Kcust_1
Kchrys

K

cust

LUNA_CLONE_AS TARGET

SOURCE

Cloning to Clear
1. Generate known

I
| K and K -1
I
I

cust cust

LUNA_LOAD_CVK

4/1[/ K. st 2. Load CVK

I
I 2. Send chosen N,
I
I

{REQ , N }K

T S

3. Generate known

LUNA_CLONE_AS_SOURCE
=1
Ké
K
K

chrys

cust

K, and KT‘l

{K K et I 4, Sign certificate
authorising chosen K;

| (REP , N,}K,
‘—"‘-"""-_~§~%"‘“~—-~_-___~>' 5. Receive source nonce

5. Combine nonces with

| under chosen K;
{APPKEY } K,
__*__""‘-_-_‘~%------~§>
I

| KCV and decrypt APPKEY
I

Making the Key Gloning Vector

RAW KCV | 80 bytes
XOr M
-
} '

0x3CC3A596
OXDEADBEEF
MD 5 0x01234567
O0x89ARCDEF
\ |
<
XOr

| Hashed KCV + C | 16 bytes

Making the Key Gloning Vector (2)

\4

16 bytes

constant Ox1l

SHA1

var_ 98

'

16 bytes 4 bytes 20 bytes

v

_ 10 bytes

16 bytes

MD5

16 bytes

20 bytes

3 key 3DES

16 bytes

constant 0x2

v

4 bytes

v

\4

16 bytes

SHA1

v

20 bytes

XOor

24 bytes

36 bytes

v

v

K1l |

K2 |

K3

24 bytes

Lessons Learned

e Going 1n the front door (reverse-engineering)
1s tough, but 1t 1s a skill that can be learned,
and done again much more quickly

* Choice of tools, and knowledge of tools 1s
vital to chances of success

e It’s easy to drown 1n a sea of maybes and
unknowns and give up. The golden rules of
reverse engineering can help

— “do what you can”, and “name everything”

Lessons Learned (2)

Legacy code 1s much better camoutlage than
obfuscation to slow reverse engineering.

OxDEADBEEF hinders reimplementation of
crypto code as it has to bit-for-bit perfect

A new defence — stupidity! If the programmer
understands his task poorly, the reverse
engineer will have an even worse time.

Beware of undocumented features in your
API. Chrysalis didn’t let on about the CVK,
what are other manufacturers hiding?

Lessons Learned (3)

e The Luna CA3 API is secure, but the
architecture has accumulated too much
baggage — 1f it 1s pushed much further, 1t may
break completely.

e If the Luna CA3 is anything to go by, HSM
code 1s no better than O/S code.

e Even if your architecture 1s not exploited by a
Security API attack, it may still be used 1n an
unexpected way.

Excellent navigation interface design, once
familiarisation done

Excellent cross-referencing comment system

Good auto-analysis and support for standard
libraries

Strong use of colours and graphics to help
Spot patterns

Good extensibility, supporting scripts and
plugins

No graphing of conditional jumps or
calculated jumps
Poor support for stack variables on ARM

Poor documentation — many features
discovered late

Non-standard look and feel

Some cosmetic defects

Weak Spots in the Luna CA3

e Application Key Integrity

— During transport, cipher was 3-Key 3DES in
CBC with fixed 1V, 32-bit CRC with custom
polynomial used for ‘integrity’

e Buffer, integer overtlows?
— Will take a brief look shortly
e Cryptographic Algorithms
— “BRUNO C.” (to be explained...)

- ~ 11—

0101 0101 oy
COD DAT ﬁ

2] 1D Viewss, |

T T e T (@ e W F A4

a
ElIDA View-A
ROM:BBACZEER -===ss=ssmmmnsnansnmme
ROM:B8BC2FF8 HOU RB, #8x42 ; 'B' ; "BRUNO C.™
ROM: BOBC2FFE STRE Ro, [SP,#-H1* ; -........ make space on stack
ROM:B886C30688 ; STACKFRAME -B8x18B8
ROM:B888C30688 HOU RB, #8z52 ; 'R’
ROM:00BC3A0Y STRE ro, [SP,4l]
ROM:B8BC3 008 mMov RB, #8255 ; *U*
ROM: AABC3AAC STRB RO, [SP,#H]
ROM:B80C3818 Hou RB, "M
ROM:B86C3 814 STRB RB,
ROM:086C3 018 HOU RO, B
ROM:BHBC381C STRB RB,
ROM:B888C3828 mMouw RB, k.
ROM:B88C3 0824 STRB RO,
ROM:B88C3 828 HOU R8, # AR
ROM:BABC3 820 STRB RO,
ROM:B886C3038 HOU RB, # k
ROM:888C3 834 STRB RB,
ROM:BABC3 0838 Hou R2,
ROM:B88BC383C STRB R2, 5 —8x18A44 mode_1_or_2
ROKM:B8BC3848 HOU R2, S ; —@x18B8 source and dest the same... but this is ok
ROM:B00C3 044 Hou R1, ; —Bx18B0
ROM: B8BC3 848 ADD RB, 5 —Bx18a8
ROM:886C3 840 HOU R3,
ROM:BRBC3 A5 BL C5_do_BlockEncrypt CBG ; input R@=&init_struct, Ri=&srcdata,R2=gdestdata,input R3=amt, output RB=a
ROM:B8BC3 854 Mou RB, R8
ROM:B886C3 058 CHP R8, RSamt
ROM:B86C3 A5G BCS err_skip ; hmmmm. ... this next loop is interesting
ROM:B88BC3 0860
ROM:886C3868 loop ; CODE XREF: C4 crypto_action mechsw+318}j
ROM:888C3 868 LDRB R1, [R11src,RB] ; read bytes from R11... source address
ROM:BABC3 064 SuB R3, RB, R8
ROM:B86C3 068 LDRB R2, [SP,R3] ; %0R with encrypted test pattern... -8x1B8
ROM:BAGC3B6C EOR R1, R1, R2
ROM:B8BC3 870 STRB R1, [R?.RB] ; write to R?
ROM:B8BC3874 ADD RB, RB, i1 ; increment storage offset...
ROM:B888C3 878 CHP RB, RSamt
ROM:B8BC3B7C BCC 1loop
ROM:B8BC3 888
ROM:880C3080 err skip ; CODE XREF: €4 crypto_action mechsuw+2F8Tj
ROM:B88C3888 ADD SP, SP, #8
ROM:B8BC3088Y ; STAGKFRAME -B8x1808
ROM:B88C3 084
ROM:BBAC3884 skip_bruno ; CODE XREF: C4_crypto_action_mechsuw+2981j
ROM:B8BC3 B84 LDRB RB, [SP,#5]
ROM:B86C3 088 CHpP RB, #8
ROH:BABC3BSC BHE on_way_to_end_function
ROM:B8BC3 090 CHP R16_flag2, #0
ROM:B86C3 894 BEQ on_way_to_end_function
ROM:B888C3098 HOU R1, RSamt
ROM: 88BC3 A9C HOU RB, R9
ROM:B88BC308AB BL C2_crypto_action_mechsw_sub1 ; strangely.... seems to be to do with MofN processing
ROM:B8BC30AL HOU R7, RB
ROM:00BC3 BAS
ROM:808C3OA8 on_way to_end function ; CODE XREF: C4_crypto_action_mechsuw+2881j
ROM:000C30AS ; C4 crypto_action mechsuw+328Tj
ROM:BBACIBAS ; C4_crypto_action_mechsu+3301j
ROM:BABC3BAE CHP R7, #B
ROM:88BC3BAC BHE near_end_function
ROM:BAAC3BEA CHP R9, Rédest
ROM:006C30BY BED near_end_function ; if addresses are the same... skip
£ |
I e eatly, B

e Question: How do you encrypt data that doesn’t
fit to a block boundary?

Plaintext

3DES 3DES 3DES 3DES

Ciphertext

e Question: How do you encrypt data that doesn’t
fit to a block boundary?

PAD

/

Plaintext

3DES 3DES 3DES 3DES 3DES

Ciphertext

Problem : Not enough OxDEADBEEEF !

e Question: How do you encrypt data that doesn’t
fit to a block boundary?

“BRUNO C.”

!

3DES

J v v v l ‘(////////
3DES 3DES 3DES 3DES

XOor

il

Plaintext

Ciphertext

Luna CA3 users, don't worry...

Luna CA3 users, don't worry...

YOU STILL NEED THE BLUE KEY

gyl HEALTH [At

http://www.cl.cam.ac.uk/~mkb23/research.html

Technical Report coming April 2004

CL: Possible reverse-engineering mini course

coming soon

