
A Monster Emerges from the Chrysalis
(Experiences reverse-engineering the Luna CA3)

Mike Bond

Computer Laboratory
10th February 2004



Contents
• Security API attacks
• Introducing the Luna CA3
• Reverse engineering with IDA
• The cloning protocol

– Stage 1: Finding it
– Stage 2: Understanding it
– Stage 3: Breaking it

• Implementing host side interface
• Lessons learned



Acknowledgements
This was a team effort!

Many many thanks to:
– Steven Murdoch
– Dan Cvrcek

Also thanks to:
– Richard Clayton, IH, Stephen Lewis, Jolyon Clulow
– and many more…



What is a Security API ?
• A command set that uses cryptography to control 

processing of and access to sensitive data, 
according to a certain policy

Host
PC or Mainframe

Security Processor
PCI Card or Separate Module

Security API

VDU

I/O Devs

Network



Security API Attacks
• APIs for HSMs have evolved to support more 

and more transactions and sophisticated 
features – but they are getting too complex now

• Use the permitted commands of the interface in 
an unusual sequence to trick a device into 
revealing secret key material

• Are simpler, quicker and more effective than 
going in by the ‘front door’?

• Or are they?



Simple
U->C : PAN 
C->U : { PAN }TC

U->C : { PAN }TC , { PMK1 }TMK
C->U : { PAN }PMK1



Data Key A^B

Data Key Part A

Set of Data KeysTest Pattern 0

Set of Test Vectors

ENCRYPT

Exporter Key X^Y

Exporter Key Part X

Set of Exporter Keys

Set of Test Vectors

EXPORT

Exported Valuable Key Material

EXPORT

MIMCRACK

MIMCRACK

Data Key Part A

Data Key A^B

Exporter Key Part X

Exporter X^Y

DECRYPT

Valuable Key Material

Data Key Part B Exporter Key Part YSet of Data Key Parts

XOR XOR XOR

Set of Exporter Key Parts

XOR

Not So Simple ?



The Luna CA3
• PCMCIA token, for secure storage of private 

keys for Certification Authorities
• Manufactured by Chrysalis-ITS (Toronto), 

acquired by Rainbow, aquired by SafeNet
• Became popular during the rise of PKIs in the 

dot com boom (Verisign exclusively uses 
Chrysalis kit for key storage)

• Uses the PKCS#11 API (through an internal 
proprietary ‘Luna API’)



Luna CA3 – Front View



Luna Dock



The Cloning Protocol
• Used for backup and availability
• Initialise a new token into the same domain 

(you need the RED key)
• Log on to source and destination tokens (with 

BLUE security officer key)
• Select an object and call 
CA_ClonePrivateKey to transfer 
between source and destination. The devices 
exchange public keys then set up a session 
key for the transfer.



Luna CA3 – Pin Entry Device (PED)



Luna CA3 – Datakeys



Primary Goal

Develop a way to extract all PKCS#11 keys 
in the clear from the Luna token, with 
the co-operation of the security officer



Motivations
• Break customer lock-in – help the market
• Learn about internal HSM architecture
• Find implementation faults (buffer overflows?)
• Find new Security API attacks?
• Learn useful skills along the way

– Reverse-engineering
– Assembler
– Particular disassembly tools



A Simple Plan
• Open up the card
• Reverse-engineer the flash chip
• Discover the cloning protocol
• Extract device keys
• Use keys to impersonate token in cloning 

protocol



Stage 1 : Finding the Protocol
• Get the ARM code
• Get a reverse engineering tool
• Familiarise and Mark-up ARM code
• Identify Command Despatcher
• Annotate Commands
• Intercept and Decode PCMCIA Bus
• Locate and Decode Cloning Protocol



Luna CA3 – Depackaged

Mystery
FPGA

PCMCIA
Controller?Stuff



Luna CA3 – Depackaged Flash 1

Flash 2
StrongARM



The Luna Flash File – AM29.BIN
• Two 1/2MB flash chips, holding half words

– ~300KB code
– ~500KB data
– ~200KB blank

• Complexity
– 1035 subroutines
– ~1700 pages of assembler (on this screen)



IDA – The Interactive Disassembler
• Made by ‘Datarescue’ – one man consultant 

went commercial with the tool he developed 
for himself. Cost ~$700 for 2 year licence.

• Beautiful windows GUI and navigation 
system. Rename functions and variable 
names on-the-fly and the new information 
propagates through the disassembly listing



IDA



Reverse-Engineering Golden Rules
Conventional wisdom is one rule...

• Figure everything out for yourself!



Reverse-Engineering Golden Rules
My wisdom...

• If you don’t know what to do,
instead, do what you can.

• Give everything a name.
if you get stuck…

http://www.babycakesinternational.com/100topbabnam.html

or use movies, friends, books



Markup and Annotation
• Make every letter in a name count!

C5D2_30SER_BLEV_JANE_do_something_sub1

• Group C1 type functions into larger clumps
• Pay special attention to most called functions

memcpy 327 calls
• Start propagating type information

– (memcpy arg 2 is length, args 0 and 1 pointers)



Finding the Command Despatcher
• Search for the biggest case switches…

– 45 switch statements in total
– ranging between 0x17 and 0x5 ways
– no idea what the command encoding was

ADDLS PC, PC, R0,LSL#2 ; switch 0xC ways

• Two pages from back of policy document 
listing the Luna API commands categorised 
by module was all we had.



Finding the Command Despatcher



The Command Despatcher
C1_30SER_MODULE_DESPATCHER_LUCY

Raw command ID (single byte)

L3_C1_LUCY_moduleA

L3_C1_MAIN_MODULE

L3_C1_USER_MODULE

L3_C1_OBJECT_MANGER

L3_C1_CRYPTO_MODULE

C1_30SER_BSW_KEYMANAGE

C1_SESSION_MGR_MODULE

C1_xlate_cmd

C1_RANDOM_NUM_GEN_MODULE

Switch 0xC ways

Switch 0x8 ways

Switch 0x9 ways

Switch 0x7 ways

45 switch
statements
in total…



Intercepting the PCMCIA Bus



Intercepting the PCMCIA Bus



Bus Intercepts : Cloning Protocol

LUNA_FIND_OBJECTS
LUNA_DESTROY_OBJECT
LUNA_FIND_OBJECTS
LUNA_GET (SLOT 0xE)
LUNA_GENERATE_KEY
LUNA_SET_UP_MASKING_KEY
LUNA_DESTROY_OBJECT
LUNA_GENERATE_KEY_W_VALUE
LUNA_CLONE_AS_TARGET_INIT
LUNA_CLONE_AS_TARGET
LUNA_GET (SLOT 0xE)

LUNA_FIND_OBJECTS
LUNA_GET (SLOT 0xE)
LUNA_GET (SLOT 0xF)
LUNA_CLONE_AS_SOURCE
LUNA_GET (SLOT 0xE)

TARGETSOURCE



Luna Key Cloning Protocol
SOURCE TARGET

{KS}Kchrys
-1

{KT}Kchrys
-1

{REQ , NT}KS

{REP , NS}KT

{APPKEY}KX

{KS}Kchrys
-1 {KT}Kchrys

-1

KS
-1 , Kchrys

LUNA_CLONE_AS_TARGET_INIT

LUNA_CLONE_AS_SOURCE

LUNA_GET (SLOT 0xF)

KT
-1 , Kchrys

LUNA_CLONE_AS_TARGET

KX=NT+NS+KD+C

KX=NT+NS+KD+C



Stage 2 : Understanding the Protocol
• We knew what the cloning routine did, but 

not where the key material came from
• The encrypted key material came from 
LEELA, the decryption key from JADE

• We could see encryption and decryption, but 
not exactly how… had to mark-up the crypto 
routines called by the cloning code
– Identify which algorithms are used
– Identify algorithm parameters, key lengths
– What about IVs?



The Luna Mysteries
• To understand the protocols we needed to 

discover the purpose of some puzzling 
functions
– C4_crypto_action_mechsw

– LEELA

– JADE

– ‘EDAFLU’



C4_crypto_action_mechsw
• Seemed to be the central function for symmetric 

crypto – called by… 
C25_C_ACTION_0_ENCRYPT 
C27_C_ACTION_0_DECRYPT

• Called C5_do_BlockEncrypt_CBC , and called lots of 
crypto-like routines, but the two seemed unlinked.

• Evidence of software DES was found (key-
schedule), but the block encrypt function called 
HIFN (a DES accelerator manufacturer) IO 
functions. Yet there was no HIFN chip in the token. 
How and where was the DES done?



C4_crypto_action_mechsw (2)
• Solution: a well hidden table jump inside the CBC 

loop, once discovered made the code make sense
• There were 3 function tables – one for preparing 

key schedule, one for encrypt and one for decrypt
• DES key schedule was calculated in software, then 

uploaded into accelerator chip (this upload was 
mistaken for the full DES calculation)

• Why was DES done as a composite in H/W and 
S/W? To claim ‘hardware accelerated DES in 
marketing brochure’? Space was too limited in 
FPGA?



Hunting LEELA
• Official name: C68_LEELA_load and 

C35_LEELA_save

• The token private key came from LEELA slot 0xF, but 
where did the slot live? The code used memcpy to 
pluck it from unusual address, but we only had rough 
idea of the memory map. Could they be special secure 
memory inside FPGA?

• Eventually: discovered that LEELA slot save code 
looked like flash file update code: became convinced 
that slots lived on 1MB flash image.

• Wrote script to scan flash for linked list of pointers as 
theorised from reader code. Success! Found LEELA 
slots at 0x88000 in AM29.BIN



Finding JADE
• JADE, officially: 

C12_JADE_prep_crypto1struct_entryA
C4_JADE_entryB

• JADE takes no arguments, and returns a 
crypto1struct , containing a DES key or a 
3DES key used for decrypting the contents of 
a LEELA slot. 

• Problem: JADE walks through data structure 
in RAM to find keys – how can we locate 
code that set up keys in data structure?



Finding JADE (2)
• Solutions:

– Take a guess. Look in login routines – maybe JADE keys come from 
physical datakeys

– Observe class of error code in JADE functions, and search for 
functions exhibiting similar error codes

• Success: C3_LOGINOUT_setup_auth_contexts_JADE 
was found. In fact, key material in JADE slots came 
from a decrypted version of the data structure inside 
a LEELA slot.

• But where did the encryption key come from? The 
datakey? And if so, which?



Finding JADE (3)

• Problem: So how can the keys be stored in 
encrypted form when the token is uninitialised? –
there is no blue key

Blue key material

PIN PIN PIN PIN PIN

xor

MD5
Repeat
x5

DES/3DES

LEELA slot 0x1D

PED Boundary

“unnecessary processing”
named 0xDEADBEEF



Datakeys Revisited
Security Officer

KCV Domain

User

M-of-N User Keys (optional)

?



The Luna PED Protocol
• PED talks to token be reusing high address lines 

from PCMCIA spec as bidirection communications 
channels

• Three lines: RESET, DATA, and DATA_VALID
• However, DATA_VALID was clocked in an 

unpredictable erratic way. Reason: Luna token 
implements serial communications protocol in 
software, and cycle time of loop was data 
dependent. 

• Used a datakey reader to make an independent 
observation of data on keys, and try to observe this 
on the bus.



The ‘EDAFLU’ Story
• During initialisation of a token, there is a special 

requirement: insert the mystery ‘grey key’
• Grey key not mentioned at all in documentation, or 

release notes
• Contained 64 bytes, mainly zeroes, save for one 

interesting constant… more 0xDEADBEEF?

00 00 01 00 00 30 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 65 64 61 66 6C 75 00 74 00 00 00



The ‘EDAFLU’ Story (2)
00 00 01 00 00 30 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 01 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 65 64 61 66 6C 75 00 74 00 00 00

e a ld f u t \0e a l

Datakey reader had wrong half-word endian!



Extracting the Token Private Key
• LEELA slot contained encrypted private key of 

token, in two forms, encrypted under grey key and 
under current blue key.

• Key material from data key retrieved
• JADE decrypts slot and puts clear keys in RAM
• We re-implemented decryption of LEELA slot 

using hash of ‘default’ key.
• Unfortunately…FAILURE
• Need to emulate ARM code and try again, or switch 

to another plan



Stage 3 : Breaking the Protocol
• Find the protocol in the code stack
• Familiarisation and mark-up of  PKCS#11 

DLL code in CRYST201.DLL
• Follow data flow inside DLL
• Intercept and change data flow
• A change of plan: CVKs



The Luna Code Stack

Luna Controller

LUNACR0 LUNANT LUNAVPN

CRYST201.DLL

Luna Enabler

Luna Dock

Luna CA3

Application

Library Code

Device Drivers

Hardware

163KB

287KB

141KB 65KB

1MB

~256KB

~256KB



Inside CRYST201.DLL
• Usual PKCS#11 entry points exported, but some extra 

vendor-specific ones of interest
CA_SetCloningDomain
CA_SetTokenCertificateSignature
CA_ClonePrivateKey (and many more…)

• DLL written in mix of C++ and C. PKCS#11 entry points 
called C++ methods of object hierarhcy representing 
different models of Luna token (Luna 1, Luna 2, Luna CA3, Luna RA etc.)

• These methods called ‘SOLAR API’, which 
corresponded closely (but not exactly) to Luna API 
intercepted on PCMCIA bus. SOLAR API called C stub 
functions, which called I/O methods of C++ class 
hierarchy representing different device drivers.

• To summarise: a real mess inside



Inside CRYST201.DLL

D4_SOLAR_1F8_LUNA_LOAD_CUST_VERIF_KEY

D1_100h_MAIN_set_token_cert_sig

ETHAN GOAT
Write DWORD

WORM

PKCS#11 API

JT_CMDSET_MAIN

CFRONT API

AUSTIN4 LLCMDS

CA_SetTokenCertificateSignature

NIOBE FISH
Write block

DOZER
Send cmd

WORM
Get data buf

JT_SOLAR_API

C

C++

SKUNK GOAT(A-D) FISH(A-D) CAT ZAK

AUSTIN TOKENIODRV40
get numsl

DRV00
get tokpr

DRV20
get insct

DRV08
read wind

DRV04
execute

DRV48
reset



Customer Verification Keys
SOURCE TARGET

{KS}Kchrys
-1

{KT}Kcust-1

{REQ , NT}KS

{REP , NS}KT

{APPKEY}KX

{KS}Kchrys
-1 {KT}Kchrys

-1

KS
-1

Kchrys
Kcust

LUNA_CLONE_AS_TARGET_INIT

LUNA_CLONE_AS_SOURCE

LUNA_GET (SLOT 0xF)

KT
-1 , Kchrys

LUNA_CLONE_AS_TARGET

KX=NT+NS+KD+C

KX=NT+NS+KD+C



Cloning to Clear
SOURCE

{KT}Kcust
-1

{REQ , NT}KS

{REP , NS}KT

{APPKEY}KX

Kcust

KS
-1

Kchrys
Kcust

LUNA_CLONE_AS_SOURCE

LUNA_LOAD_CVK

KX=NT+NS+KD+C

2. Load CVK

2. Send chosen NT

4. Sign certificate
authorising chosen KT

3. Generate known
KT and KT

-1

1. Generate known
Kcust and Kcust

-1

5. Receive source nonce
under chosen KT

5. Combine nonces with
KCV and decrypt APPKEY 



Making the Key Cloning Vector
RAW KCV 

MD5

80 bytes

16 bytes

64 bytes

xor

0x3CC3A596
0XDEADBEEF
0x01234567
0x89ABCDEF

xor

Hashed KCV + C



Making the Key Cloning Vector (2)
Hashed KCV + Constants 16 bytesvar_80

SHA1
var_98

16 bytes 4 bytes 20 bytes

constant 0x1

40 bytes

MD5

20 bytes

16 bytes

xor

24 bytes16 bytes



Making the Key Cloning Vector (3)
Hashed KCV + C

36 bytes

16 bytes 4 bytes 16 bytes

SHA1

24 bytes

20 bytes

xor

24 bytes

constant 0x2

K1       K2        K3 24 bytes3 key 3DES



Lessons Learned
• Going in the front door (reverse-engineering) 

is tough, but it is a skill that can be learned, 
and done again much more quickly

• Choice of tools, and knowledge of tools is 
vital to chances of success

• It’s easy to drown in a sea of maybes and 
unknowns and give up. The golden rules of 
reverse engineering can help
– “do what you can”, and “name everything”



Lessons Learned (2)
• Legacy code is much better camouflage than 

obfuscation to slow reverse engineering.
• 0xDEADBEEF hinders reimplementation of 

crypto code as it has to bit-for-bit perfect
• A new defence – stupidity! If the programmer 

understands his task poorly, the reverse 
engineer will have an even worse time.

• Beware of undocumented features in your 
API. Chrysalis didn’t let on about the CVK, 
what are other manufacturers hiding?



Lessons Learned (3)
• The Luna CA3 API is secure, but the 

architecture has accumulated too much 
baggage – if it is pushed much further, it may 
break completely.

• If the Luna CA3 is anything to go by, HSM 
code is no better than O/S code.

• Even if your architecture is not exploited by a 
Security API attack, it may still be used in an 
unexpected way.



IDA Strengths
• Excellent navigation interface design, once 

familiarisation done
• Excellent cross-referencing comment system
• Good auto-analysis and support for standard 

libraries
• Strong use of colours and graphics to help 

spot patterns
• Good extensibility, supporting scripts and 

plugins



IDA Weaknesses
• No graphing of conditional jumps or 

calculated jumps
• Poor support for stack variables on ARM
• Poor documentation – many features 

discovered late
• Non-standard look and feel
• Some cosmetic defects



Weak Spots in the Luna CA3
• Application Key Integrity

– During transport, cipher was 3-Key 3DES in 
CBC with fixed IV, 32-bit CRC with custom 
polynomial used for ‘integrity’

• Buffer, integer overflows?
– Will take a brief look shortly

• Cryptographic Algorithms
– “BRUNO C.” (to be explained…)



“BRUNO C.”



“BRUNO C.”

3DES 3DES 3DES 3DES ?

Plaintext

Ciphertext

• Question: How do you encrypt data that doesn’t 
fit to a block boundary?



“BRUNO C.”

3DES 3DES 3DES 3DES

Plaintext

Ciphertext

• Question: How do you encrypt data that doesn’t 
fit to a block boundary?

3DES

PAD

Problem : Not enough 0xDEADBEEF !



“BRUNO C.”

3DES 3DES 3DES

3DES Plaintext

Ciphertext

• Question: How do you encrypt data that doesn’t 
fit to a block boundary?

“BRUNO C.”

3DES xor



Luna CA3 users, don’t worry…



Luna CA3 users, don’t worry…

YOU STILL NEED THE BLUE KEY



More Information
http://www.cl.cam.ac.uk/~mkb23/research.html

Technical Report coming April 2004

CL: Possible reverse-engineering mini course
coming soon


