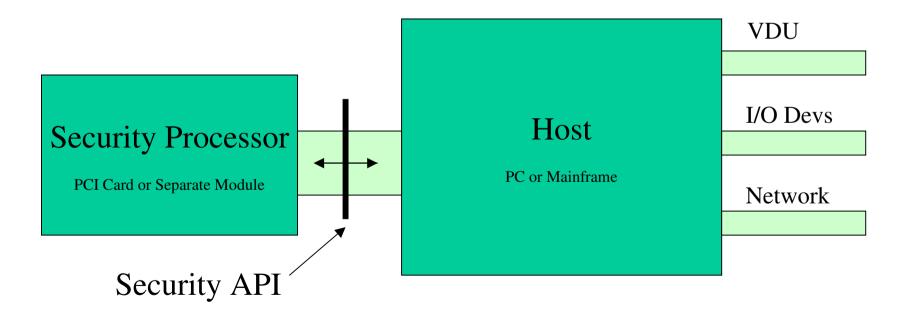


Security APIs - Digital Battlefields

Mike Bond Computer Security Group

University of Bristol – Information Security Group


4th Nov '03

Summary

- What is a Security API?
- Origins of Security APIs : the Military
- The "killer-app" : Banking Security
 - Introduction to banking security
 - Classic banking security failures
 - New banking security attacks
 - Lessons learned
- The "Digital Battlefield"
- Conclusions

What is a Security API ?

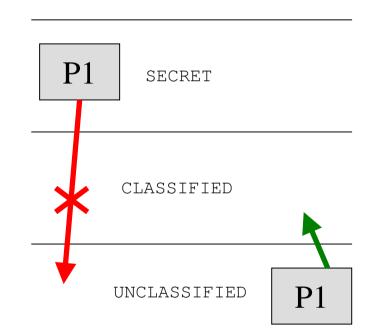
• A command set that uses cryptography to control processing of and access to sensitive data, according to a certain policy

Example Security API Commands

- $U \rightarrow C$: { A }_{KM} , { B }_{KM}
- $C \rightarrow U$: { A+B }_{KM}
- $U \rightarrow C$: GUESS , { ANS }_{KM}
- C->U : YES (if GUESS=ANS else NO)

Research into API Attacks

- Some work in early 90's using prolog style search to find attacks, but few documented attacks
- Work started in 2000 at University of Cambridge with analysis of hardware security modules used in banks to protect PINs for ATMs
- New work found many more attacks, and produced first significant catalogue of API failures
- Scope has been broadened to include security modules used by certification authorities and also general purpose crypto libraries (eg MSCAPI, PKCS#11)
- Latest work revisiting financial APIs examining PIN generation and verification procedures


Origins of Security APIs: Military Security

Two threads...

- Tamper-resistant Control Devices
 - gives us notion of a "Hardware Security Module"
 - Provides a well defined boundary at which the API is presented
 - Provides concepts of authorisation and dual control
- Multi-Level Secure Operating Systems
 - provided sophisticated information flow policy
 - provided large multi-purpose API
 - used cryptography to maintain confidentiality of classified data

Multi-Level Security

- Information flow security, as formalised by Bell-LaPadula
 - Golden rules: No read up, No write down
- In practice, the OS system calls can be viewed as a security API enforcing this policy
 - API commands to create processes, change security tags, declassify etc.

• Getting the OS bug-free and avoiding covert channels turned out to be the biggest problems. Were there any weaknesses in the APIs?

TOP SECRET

Nuclear Command and Control

- After Cuban missile crisis, all US nuclear ordinance had to be got under "positive control"
- 'PAL's Permissive Action Links
- 'PACS' Permissive Action Control System
- Very simple API: control systems would only arm the weapon upon presentation of a code
- Dual control / "split knowledge" policies used at command nodes
- Main worry became bypass of authorisation system solution: tamper detecting membranes would trigger (non-nuclear) explosive destruction of warhead, or chemical reactions rendering the plutonium non-fissile.

An Early PAL (c. 1960)

Disassembled Warhead

Today's Digital Battlefield

- Access control first used for nukes extended
 - Artillery
 - Communications Equipment
 - Nowadays: tactical control systems, tanks, radars, mobile SAM sites
 - Anything which may be captured on battlefield

- Other uses of crypto on the battlefield
 - IFF radar systems, Covert radio

Commercial Hardware Security Modules

- Government defence contractors begin to offer similar technology to secure business communications and transactions
- Commercial HSMs drew together the sophisticated API of a secure OS, coupled with tamper-resistance as developed to protect military hardware

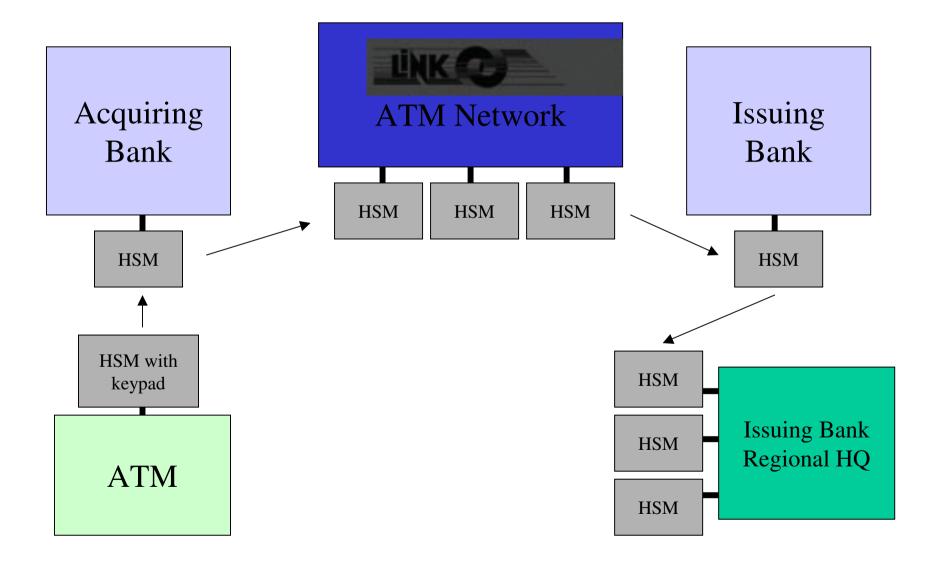
Hardware Security Modules

Who Needs Security Modules ?

• Those who need to enforce access policies to sensitive information

Examples: Granting signing permission at a Certification Authority Enforcing split control policies on nuclear weapons & arming codes

- Those who need to protect mission critical sensitive data Example: Protecting PIN generation keys at banks
- Those who need to protect data in hostile environments Examples: Protecting Token Vending Machines (Electricity, Lottery etc...) Protecting communications keys in battlefield radios
- Those with high crypto throughput requirements Example: SSL acceleration for webservers

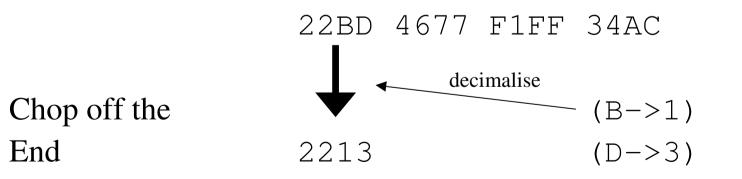

Studying APIs : Financial Security

- Concrete and simple security policy for APIs "Only the customer should know her PIN."
 "Keys protecting PINs may only be manipulated when authorised by two different employees."
- API manuals are often publicly available
 - IBM put 4758 CCA manual on its website
 - Diversity: many manufacturers have APIs performing same broad functionality – good for comparison
- ATM security was the "killer-app" that brought cryptography into the commercial mainstream so long history of financial API development

Introduction to ATM Security

- The crucial secret is the customer PIN. The customer should be the only person that knows the value of this PIN
- PINs need to be protected from malicious insiders and outsiders
- PINs must be protected when generated, in storage, when issued to customers, when travelling via the international ATM network, and when being verified
- To this end, banks use Hardware Security Modules (HSMs) to perform cryptography and implement a policy which prevents both insiders and outsiders from gaining unauthorised access to PINS.

Security Modules in Banks



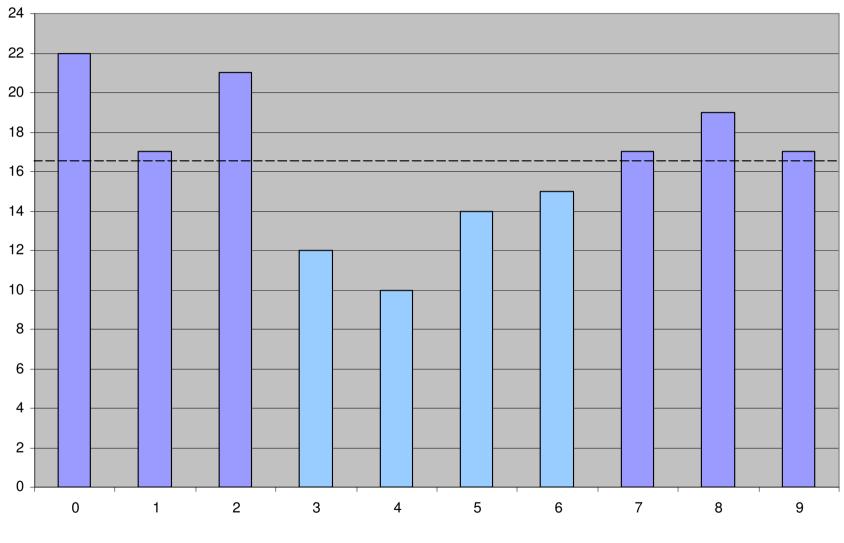
How are PINs Generated ?

Start with your bank account number (PAN)

5641 8203 3428 2218

Encrypt with **PIN Derivation Key** (aka **PMK** – Pin Master Key)

What's a Decimalisation Table **?**


- Remember encrypted result was in hexadecimal?
- Encryption produces output that looks uniformly distributed, so 0-F are all equally likely
- Decimalisation Table used to map 0-F back to 0-9

digit in 0123456789ABCDEF digit out 0123456789012345

e.g. 22BD -> 2213

• Because some numbers have several hexadecimal digits mapped to them, they are more likely to occur in issued PINs than others

Example Distribution : HSBC

(Sample size: 45 people)

XOR to Null Key Attack

- Top-level crypto keys exchanged between banks in several parts carried by separate couriers, which are recombined using the exclusive-OR function
- A single operator could feed in the same part twice, which cancels out to produce an 'all zeroes' test key. PINs could be extracted in the clear using this key
- $U \rightarrow C$: {KP1}_{KM} , {KP2}_{KM}
- $C \rightarrow U$: {KP1 xor KP2}_{KM}

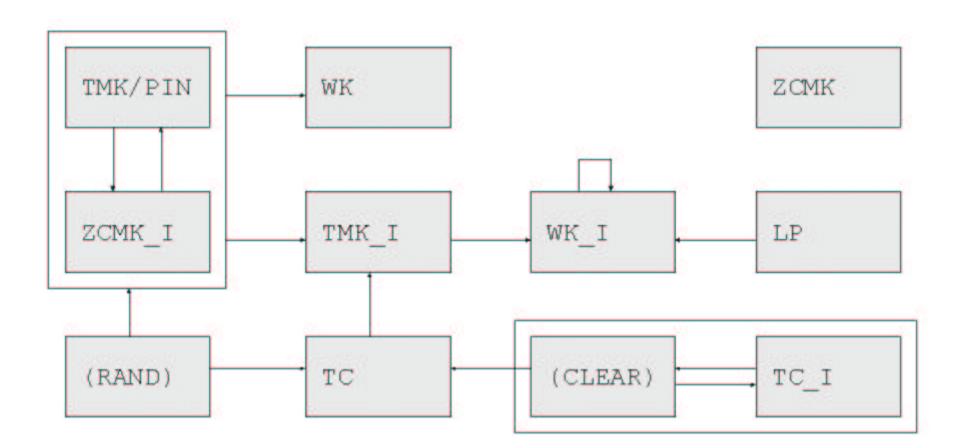
U->C : {KP1}_{KM} , {KP1}_{KM}

C->U : {KP1 xor KP1}_{KM}

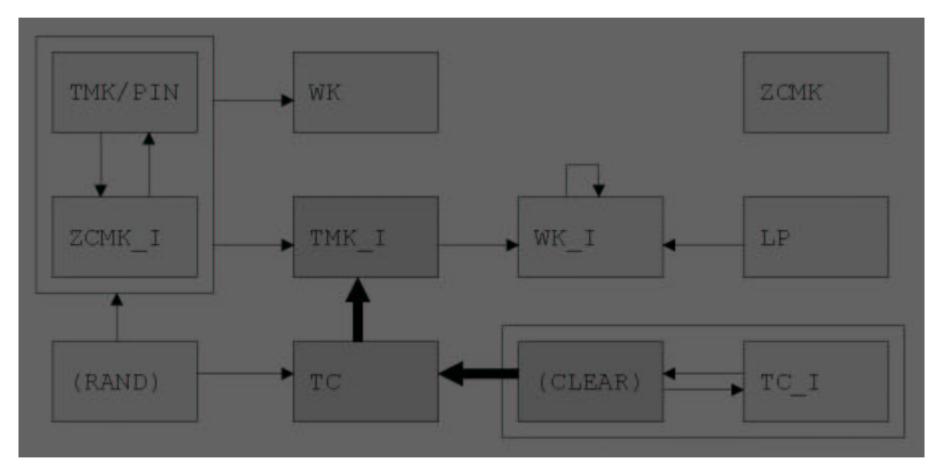
$$I = \{0\}_{KM}$$
)

(Anderson 2000)

VSM Type System Attack


- Encrypting communication keys for transfer to an ATM used exactly the same process as calculating a customer PIN
- Customer PINs could be generated by re-labelling an account number as a communications key, and using the same encryption process

(Bond 2000)


The Visa Security Module

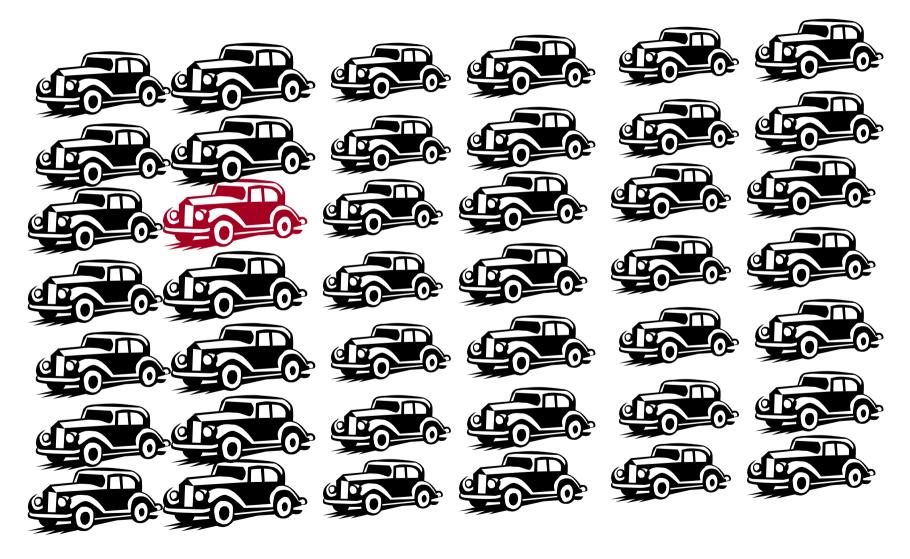
VSM Type Diagram

VSM Type System Attack

Type System Attack (Protocol Notation)

- **U->C** : 5641 8203 3428 2218
- **C−>U** : {5641 8203 3428 2218}_{TC}
- U->C : {5641 8203 3428 2218}_{TC} , { PMK }_{TMK}
- **C−>U** : {5641 8203 3428 2218}_{PMK}
- **{**5641 8203 3428 2218**}**_{PMK} = 22BD 4677 F1FF 34AC

So customer PIN is 22BD i.e. 2213

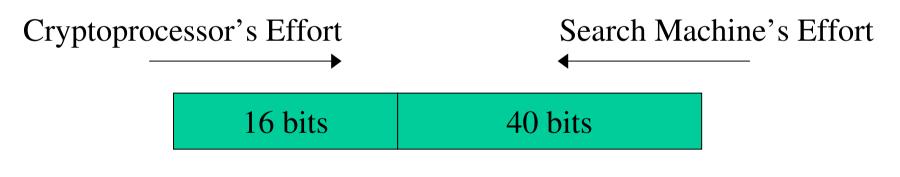

Car Park Analogy

• A thief walks into a car park and tries to steal a car...

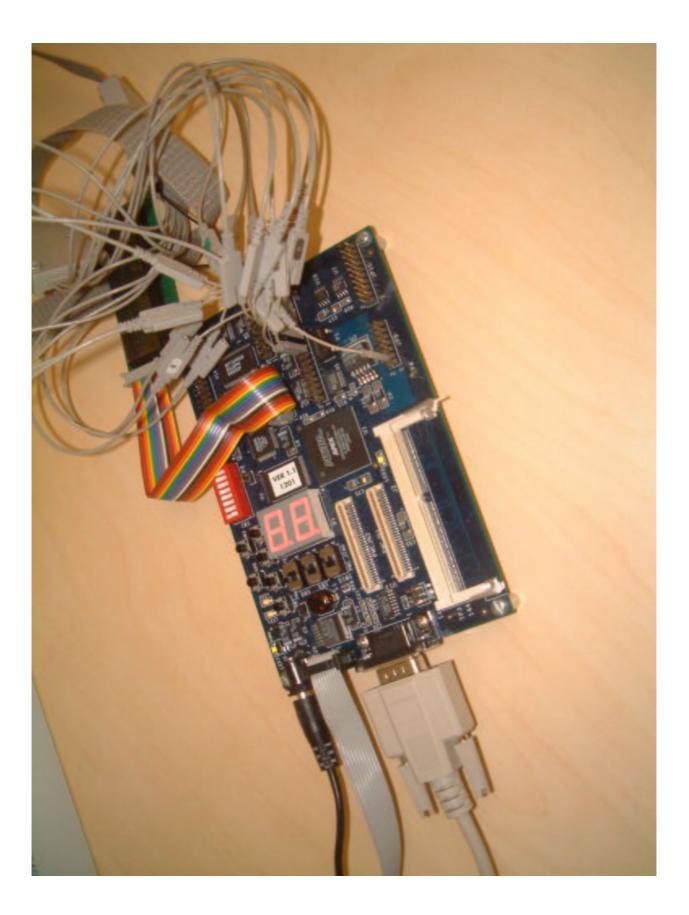
• How many keys must he try?

Car Park Analogy 1900

Car Park Analogy 2000

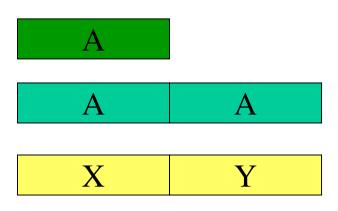


The Meet in the Middle Attack


- Common sense statistics
- Attack multiple keys in parallel
- Need the same plaintext under each key
- Encrypt this plaintext to get a 'test vector'
- Typical case: A 2⁵⁶ search for one key becomes a 2⁴⁰ search for 2¹⁶ keys
- Poor implementations of 3DES key storage allow
 3DES key halves to be attacked individually

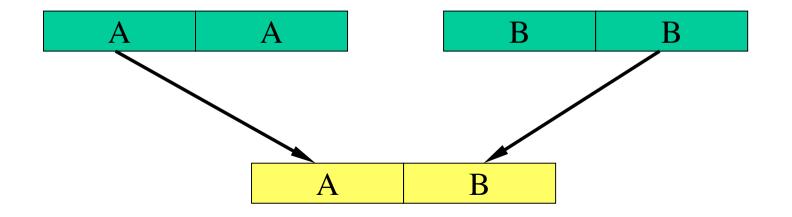
MIM Attack on DES Security Modules

- Generate 2¹⁶ keys
- Encrypt test vectors
- U->C : { KEY1 }_{KM}
- C->U : { 0000000000000000000 }_{KEY1}
- Do 2⁴⁰ search



56 bit key space

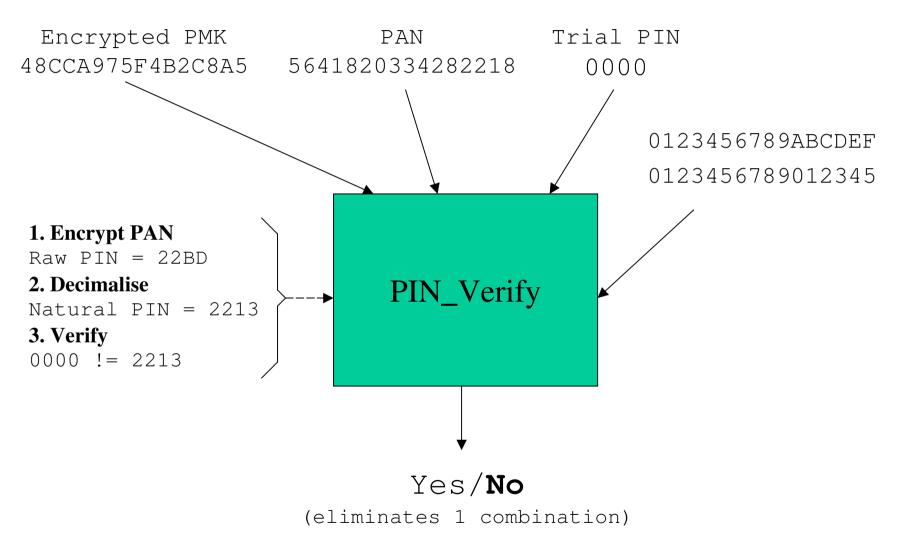
MIM Attack on <u>Triple-DES</u> HSMs


 $E_{K}(D_{K}(E_{K}(KEY)) = E_{K}(KEY))$

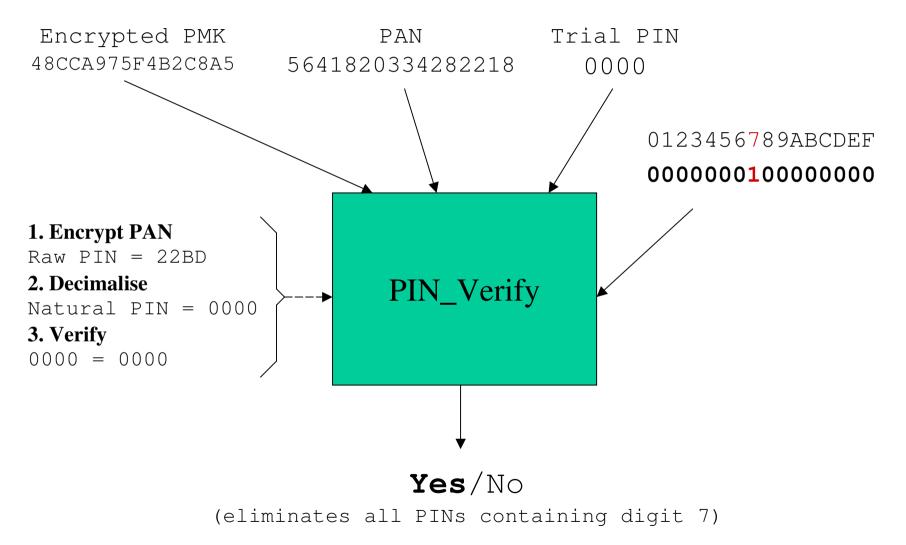
Single Length Key

Double Length "Replicate"

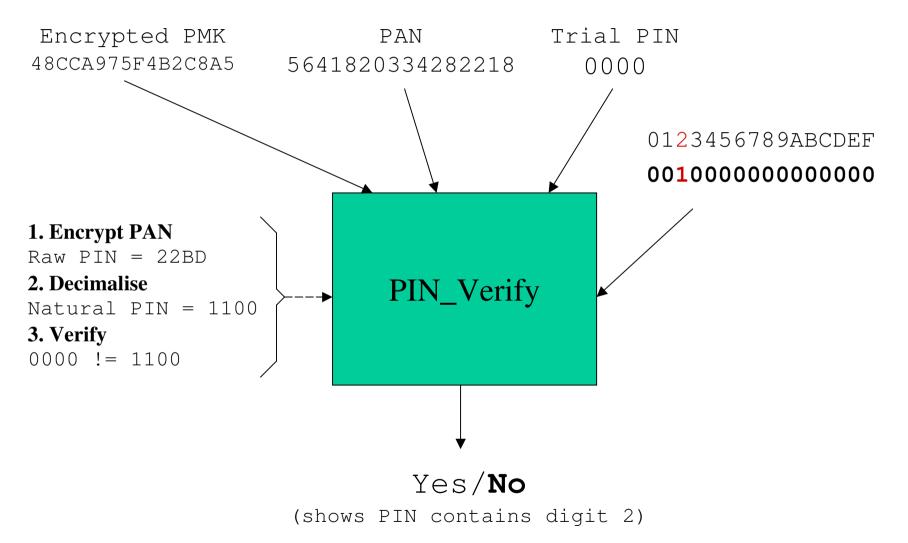
Double Length

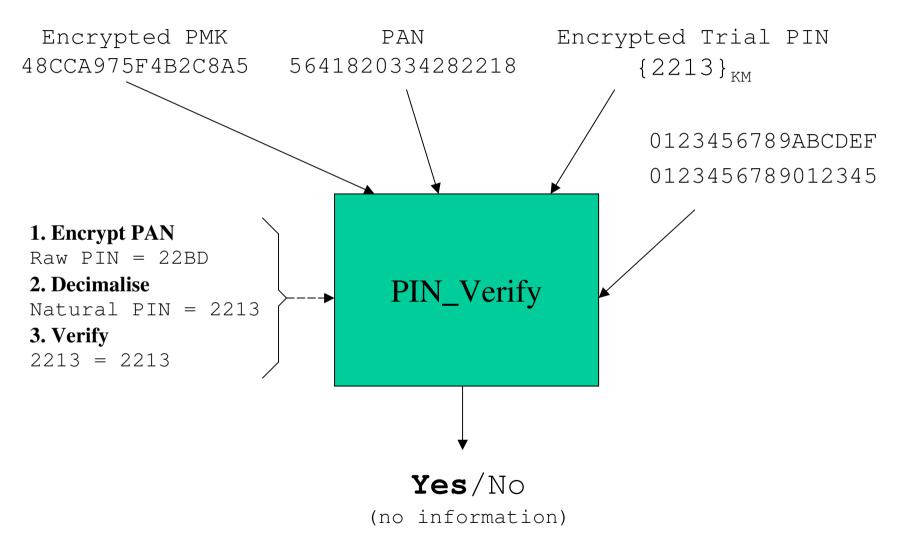

Decimalisation Table Attack

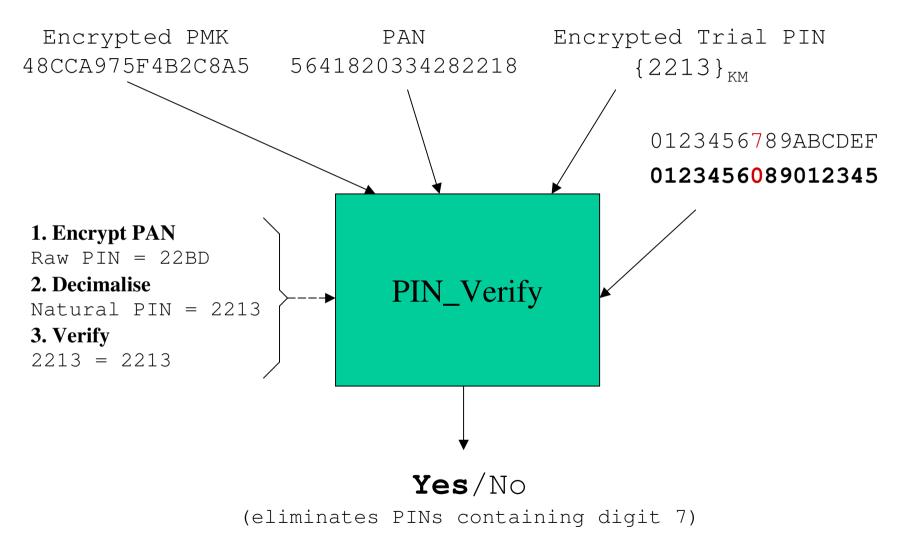
- Remember PINs derived from account numbers
- Hexadecimal raw PIN is converted to decimal using decimalisation table
- Most APIs allow the decimalisation table to be specified with each PIN verification command
- A normal verification command eliminates one of 10,000 combinations of PIN for the attacker.
- If the table is altered, whether or not the alteration affects correct verification leaks much more information about the PIN


examples...

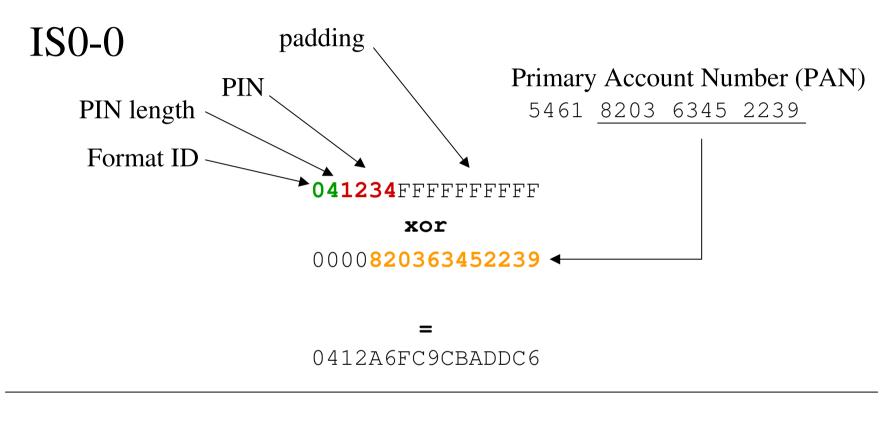
(Bond/Clulow 2002)


Decimalisation Table Attack (1)


Decimalisation Table Attack (2)

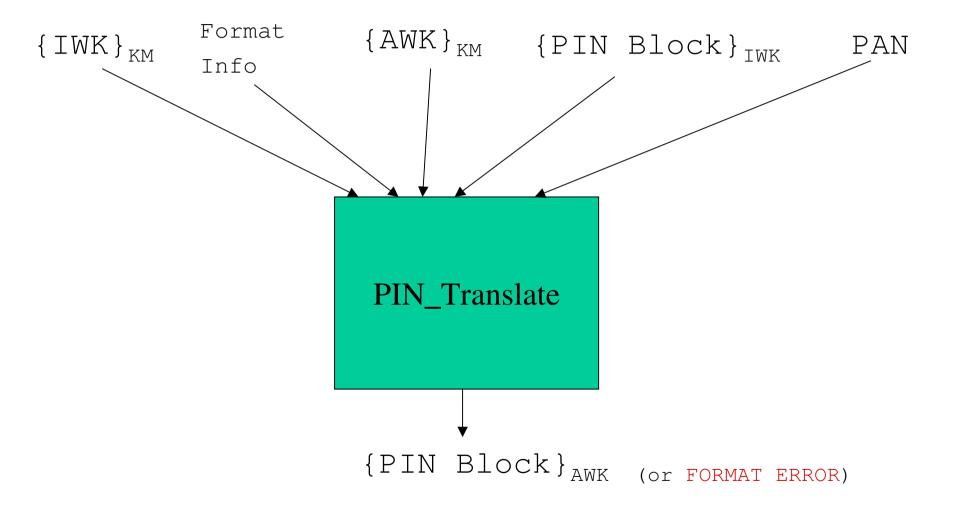

Decimalisation Table Attack (3)

Decimalisation Table Attack (4)


Decimalisation Table Attack (5)

PAN Modification Attack (1)

- Encrypted PINs transferred from ATM to issuing bank via ATM network using point to point encryption
- At each node PIN block must be decrypted with incoming key, and re-encrypted with outgoing key
- Common ISO standard "binds" PIN to particular customer by exclusive-ORing PAN with PIN before encryption
- Attack: specifying incorrect PAN may make deduced PIN contain hexadecimal digit 'A'-'F', which causes formatting error. Conditions under which formatting error arises leaks information about PIN.


PIN Block Formats

IS0-2

241234FFFFFFFFFFFFFFFF

PAN Modification Attack (2)

PAN Modification Attack (3)

041234FFFFFFFFFF						I	PIN					
xor			0	1	2	3	4	5	6	7	8	9
0000820363452239	construction	0	0	1	2	3	4	5	6	7	8	9
=	of PIN block	1	1	0	3	2	5	4	7	6	9	8
0412B6FC9CBADDC6		2	2	3	0	1	6	7	4	5	Α	В
		3	3	2	1	0	7	6	5	4	В	A
0412B6FC9CBADDC6		4	4	5	6	7	0	1	2	3	С	D
xor	compact DAN	5	5	4	7	6	1	0	3	2	D	С
0000820363452239	correct PAN removed	6	6	7	4	5	2	3	0	1	E	F
=	PAN	7	7	6	5	4	3	2	1	0	F	E
041234FFFFFFFFFF		8	8	9	A	B	С	D	E	F	0	1
		9	9	8	B	A	D	С	F	E	1	0
0412B6FC9CBADDC6		A	Α	B	8	9	E	F	С	D	2	3
xor		В	B	A	9	8	F	E	D	C	3	2
0000 7 20363452239	modified PAN Removed – PIN	С	С	D	E	F	8	9	A	B	4	5
=	contains 'C' –	D	D	C	F	E	9	8	B	A	5	4
0412C4FFFFFFFFFFF	error	Ε	E	F	C	D	Α	B	8	9	6	7
0412046666666666	5. F.			E	D	С	B	A	9	8	7	6

Lessons Learned from Banking APIs

- Classic protocol problems (e.g. binding) can hit security APIs hard
- Legacy system support and unnecessary flexibility can undermine security
- Sophisticated attacks are always possible
- Trading standard of the security with cost creates instability constant attack and defence of new exploits and minimal fixes

"Digital Battlefields"

Question : What do you get if you cross...

- Legislation
 - Against piracy and copyright infringement *but also...*
 - Against anti-competitive behaviour
- New Marketing Models
 - Rental model for software and services
 - Accessory control and subsidised central units
- Trusted Computing
 - Greater control
 - DRM & IRM

Legislation : Legitimised Attack

- Ongoing Microsoft anti-trust case how much functionality should Microsoft integrate into its dominant OS?
- Lexmark sued SCC for hacking printer cartridge authentication chips, and replicating them to make compatible cartridges. SCC won (but still have to defeat Lexmark's security to achieve compatibility)
- SONY has tried to sue Datel (unauthorised PS2 accessory manufacturers) several times but failed.
- We may see new legislation overriding DMCA protection against reverse-engineering when it is used anti-competitively.

New Marketing Models

- Ever more subsidised main devices, money recuperated from accessories, refills and software
 - accessory revenue stream must be protected
- New payment schemes
 - who has billing relationships with you?
 Banks, phone companies, ISPs
 - who has the DRM and control technology? *Platform manufacturers, OS manufacturers*
- Increased ease of manufacturer lock-in encrypted file-formats

Accessory Control Examples

- SONY MagicGate chip only authorised memory cartridges will work in SONY playstations, mp3 players, laptops
- Printer cartridges only authorised catridges will work; refill impractical
- Mobile phone batteries must be authenticated, for "increased safety"
- Spare parts for cars may soon be authenticated cryptographically, to protect against "substandard manufacturing" (BMW has plans)
- As the functionality and range of services of devices authenticated increases authentication protocols turn into full blown APIs

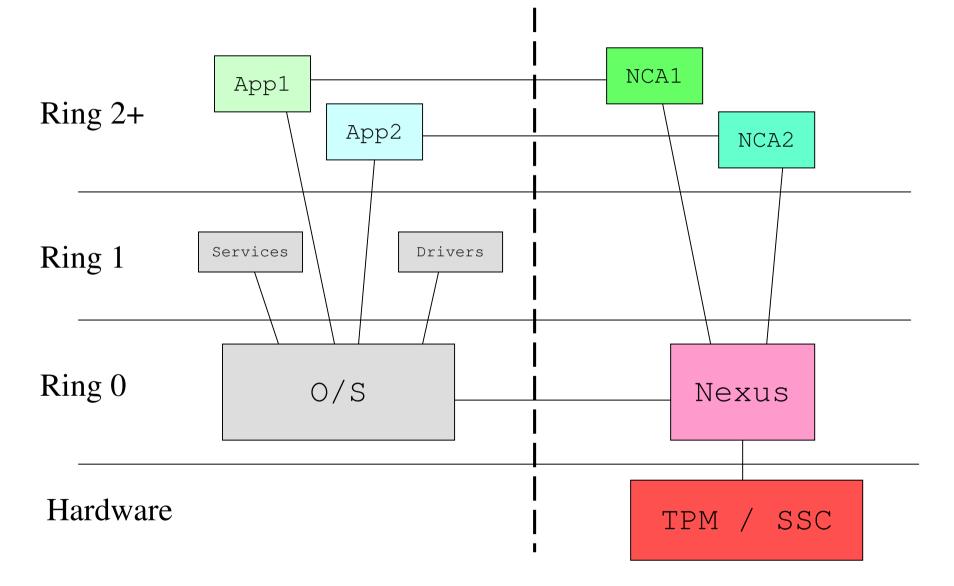
Trusted Computing – A double-edged sword

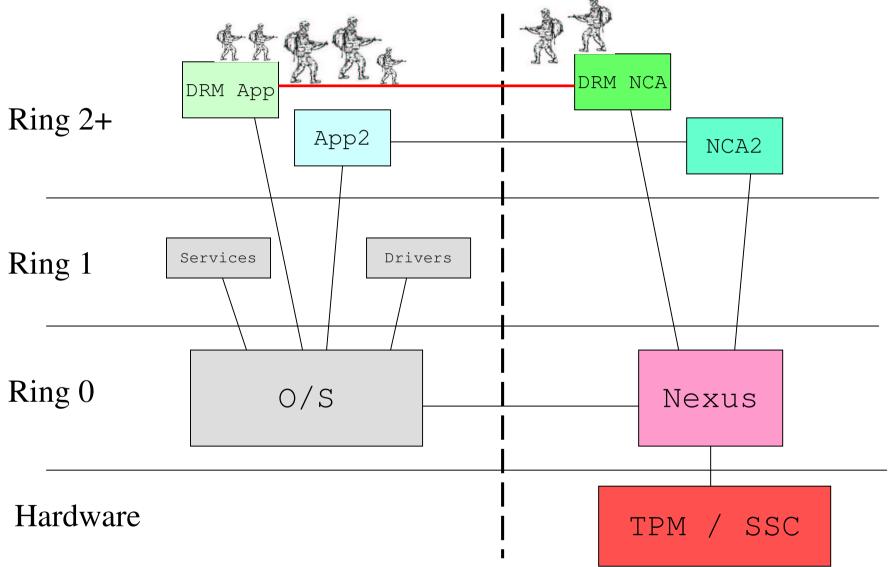
- IRM Information Rights Management
 - Companies can stop leaks
 - Mafia can keep their records secret
- DRM Digital Rights Management
- Trusted IO Enter your ATM PIN at your PC
- Global PKI All devices potentially indentifiable
- Trusted Anonymity Systems
- Truly Anonymous peer-to-peer systems
- High-availability systems
- Reverse-engineering resistant viruses

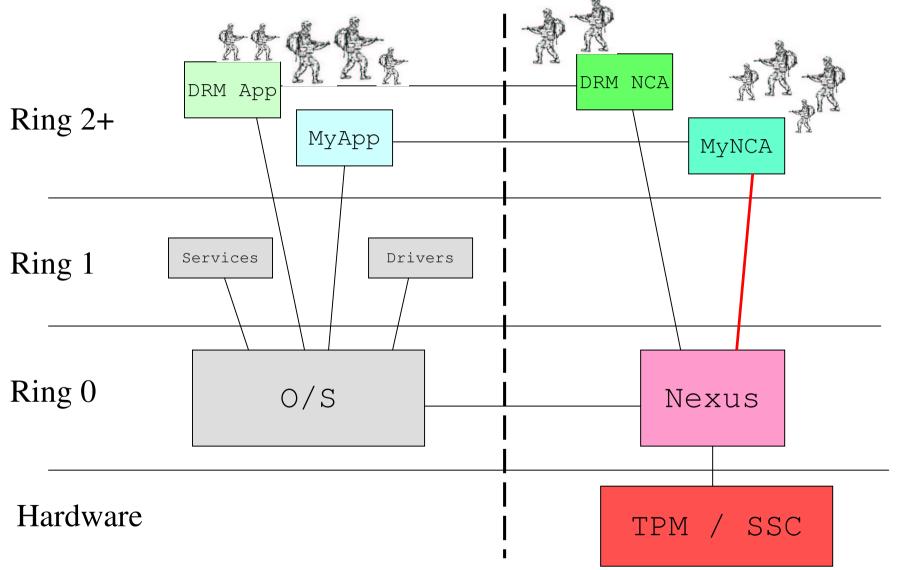
Digital Rights Management

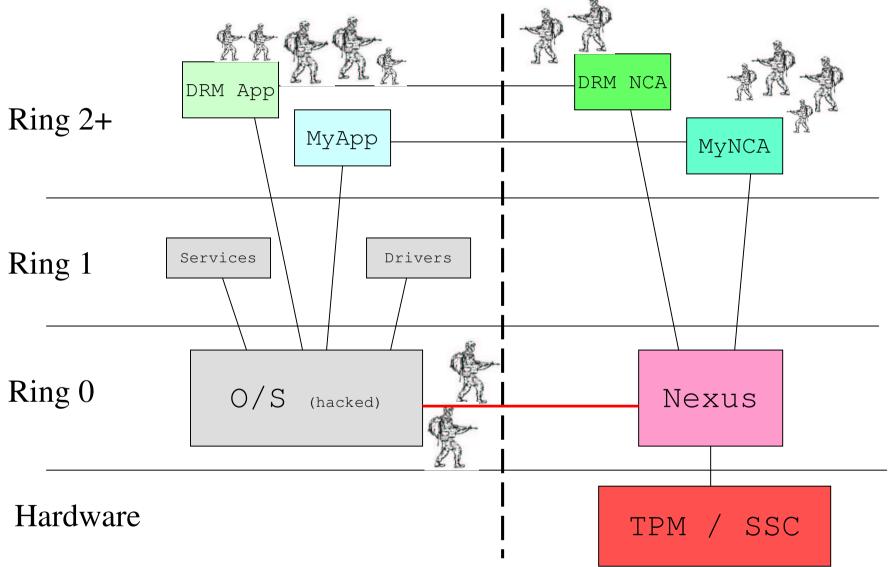
- Nowadays, DRM refers mainly to digital entertainment media
 - DVDs that can't be ripped, better region control for market segmentation, more sophisticated rental models
 - Control the flow of legitimately downloadable music & video from the internet
 - Mobile phone ringtones
- New terminology "IRM" introduced...

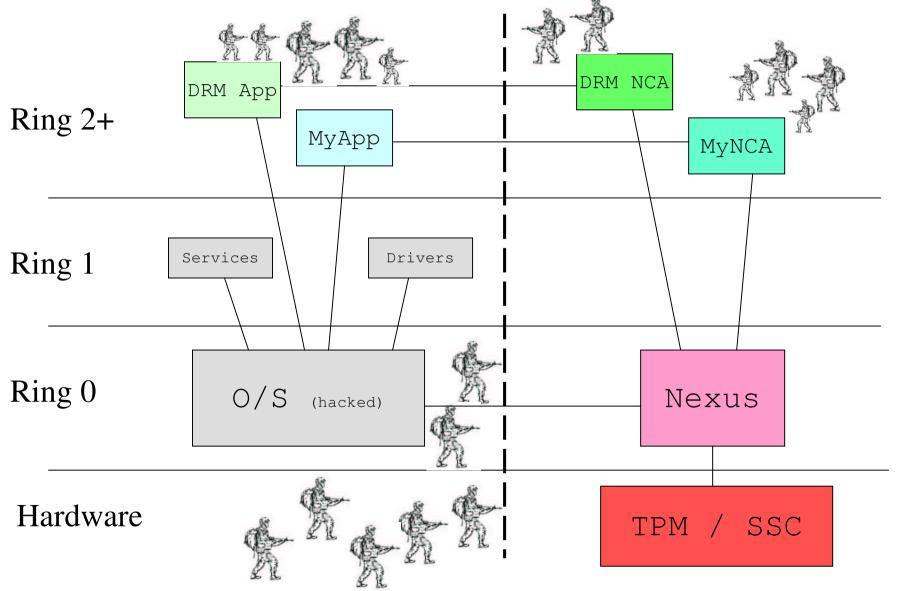
Information Rights Management

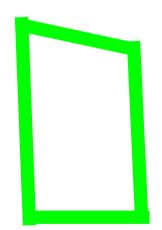

• Microsoft Office 2003 with

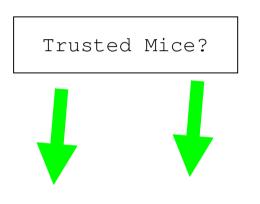

Microsoft Rights Management Server


The "restrict" button

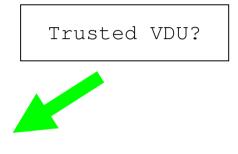



Elle Edit Ylew Go Iools (ctions Help		Type a question for help						
New - A Pa X ABeply 6	Reply to All 🔒 Forward	Send/Receive 20	Find D Type a contact to find						
Mail	Inbox	5							
Favorite Folders	Arranged By: Conversation	Newest on top / A	Q4 Highlights						
La Schedules (5) La Unread Mail (36)	Weekly Meeting	11:49 AM	& Jeune Ji [Jeuneji@contoso.com]						
All Mail Folders	Vacations		Fallow up						
B 🕼 Mailbox - Guy Gilbert	Marc Faerber	11:28 AM	To: "Cytis Barzdukas", "Catherine Boeger", "Anu Deshpande", "Ouy Gilbert", Cc: "Marc Faerber"						
B Deleted Items (24)	RE: Seminar Update		Attachments: medokl.odf (1 MB)						
Drafts [2]	🖻 Bharat Mirchandani	10:44 AM	The second for the factory						
🖻 🔄 Inbax (19)	🔒 Kirk Gregersen	10:44 AM	As you know, this quarter our team launched two new						
Best Practices (1)			products. The products were met with surprising enthusi-						
Newletters (10)	Pedro Gutierrez	9:59 AM	asm and were covered broadly in the news.						
Schedules (5)	G Q4 Highlights		Sales were forecast to be relatively flat this quarter due to						
Weekly Reports	Jeune J	6/27 😵	plans for a smaller than usual launch. Instead of invest-						
Junk E-mail	Gytis Barzdukas	Mon 6:09 PM 1 👻	ing heavily in advertising, the emphasis was placed on						
G Outbox	Catherine Boeger	Tues 7:29 PM \$ 7 1	physician contact through sales calls and invitations to						
Search Folders	Anu Deshpande	9:42 AM	regional launch events. Sales proved to be higher than						
For Follow Up [10]	Schedules		expected primarily due to significant positive press and						
Large Messages (5)	Kelly Weadock	6:01 AM	public relations response to the new drugs.						
Unread Mail (36)	Article for Presentations		Thanks,						
	Bharal Mirchandani	5/13 7	Jeune						
10000 m	Leune J	5/22 7	A A A A A A A A A A A A A A A A A A A						
A Mail	Catherine Boeger	4:52 AM							
Calendar	Welcome back		From: Gytis Barzdukas Sent: Tuesday, January 07, 9:30 AM						
	Gylis Barzdukas	Mon 6:45 PM 7	To: Jeune JI; Catherine Boeger; Anu Deshpande; Guy Gilbert; Pedro Gutierrez						
S Contacts	New Web site		Cc: Marc Faerber; Bharat Mirchandani; Kelly Weadock;						
🕅 Tasks	G Guy Gibert	Tues 5:10 PM	Congratulations to the team for a successful quarter!						
	Please review		Great work!						
Notes	Marc Faerber	5/13 🟹							
		5/22 7	-Gybis						





The image on this page of my office desk has been removed from the online version because it made the file much too big (applies to subsequent 6 pages too)


It wasn't very interesting anyway...

Trusted Keyboard?

Trusted Mobile?

Trusted Comms?

Conclusions

Question : What do you get if you cross new legislation, new marketing models, and trusted computing? Answer: WAR

- Security and cryptography will be used more and more for corporations to hold onto their customer bases, protect their revenue streams, segment their markets, and generally beat back the competition
- Security APIs, simple or complex may soon be governing the interaction between devices, from PCs to Price Tags
- The corporations are already at war; devices on our PCs and on our desks could become the footsoldiers.
- Devices that should be co-operating with each other to make our lives simpler will soon be at war!
- From our previous experience of commercial security API design, getting things right is hard. If legislators allow it, these wars may rage long and hard.

More Info

• Academic Papers

"Decimalisation Table Attacks for PIN Cracking" Bond, Zielinski, Mar 2003

"API-Level Attacks on Embedded Systems" Bond, Anderson, Oct 2001

"The Design and Analysis of Cryptographic APIs for Security Devices" Clulow, Jan 2003

• My Webpage

http://www.cl.cam.ac.uk/~mkb23/research.html