
Encrypted? Randomised? Compromised?

(When Cryptographically Secured Data is Not Secure)

Mike Bond and Jolyon Clulow

Computer Laboratory, University of Cambridge,
JJ Thompson Av., CB3 0FD, UK

{Mike.Bond, Jolyon.Clulow}@cl.cam.ac.uk

Abstract. Protecting data is not simply a case of encrypt and forget:
even data with full cryptographic confidentiality and integrity protection
can still be subject to information leakage. We consider the issue of
information leakage through side channels in protocols. Previous work by
Bond and Clulow identified multiple vulnerabilities in APIs for financial
PIN processing systems, and suggested remedies; however our work here
shows that the fixes do not work, and that the problem of information
leakage in these APIs has still not been adequately addressed. We argue
that information flow and leakage analysis will play an important role in
the security of encrypted databases in the future.

1 Introduction

Processing highly sensitive data is becoming a tricky business. Whether it is se-
cret recipes, passwords and PINs or personal data, system designers now realise
that they can’t just encrypt and forget. They know that cryptographic data in
storage needs to have both confidentiality and integrity protected, and adequate
policy (and enforcement of policy) to determine who may access the data, and
under what circumstances. However, as more and more sensitive data resides
in encrypted form, and trusted computing initiatives drive up the quantity of
system data considered sensitive, designers must now come to terms with un-
derstanding how to preserve the security of sensitive data during processing, and
how to regulate its flow and leakage.

In this paper, we examine how security APIs – the interfaces to crypto-
graphic processors – are failing to properly protect sensitive data. This data
may be secure in storage, but becomes vulnerable during manipulation. We de-
scribe several newly identified flaws in the security APIs of hardware security
modules supporting international ATM networks, which demonstrate that erad-
icating information leakage in encrypted databases is extremely difficult, par-
ticularly when the data stored is weak (i.e., easily guessable). We expand upon
the previous work by Bond [2, 3] and by Clulow [5], which identified multiple
ways to exploit information leakage in PIN processing APIs. They identified the
decimalisation table input as being vulnerable. Bond suggested that only full
authentication of the correct table (or settling on a single table and hard-coding



it) would be an adequate solution. We show that the underlying bias created
by the decimalisation table is still exploitable, and that the shortcomings of the
ISO-0 format cannot be masked.

2 Existing Attacks against Cryptographically Secured
Data

Information leakage is usually thought of in the context of side-channel analysis
of physical devices engaged in security protocols. However protocols that operate
on protected data may leak a small amount of information, perhaps a few bits or
a fraction of a bit, which if identified, can be recovered and accumulated through
repeated protocol runs (or sequences of API calls), eventually revealing an en-
tire secret, or bringing it within range of a brute-force search. There exist strong
similarities between these channels and conventional side channels exploited dur-
ing power analysis, timing or emissions attacks. However, a crucial difference is
that key material processed in cryptographic algorithms is often processed in a
known or obvious sequence, so observation of a characteristic may permit the
identification of an explicit bit of the secret. Repetition is used in the attack
process to target other distinct bits of the key, or to reduce noise. In the case
of information leakage through protocols, the correspondence between the data
leaked and key bits of a given secret may be much more complex. A non-trivial
algorithm may be required to convert the information revealed about the secret
into knowledge of the secret itself.

The game MastermindTM provides a fine illustration of how protected data
is compromised through the processing of the data or a query relating to a
property of the data. One player choses a pattern of four coloured pegs that
he fixes. This pattern is protected in the sense that it is not directly revealed
to the opposing player. One can think of it as an encrypted secret. The second
player tries in an iterative manner to guess the pattern. With each guess, the
first player tells the second player the number of pegs of the correct colour in
the correct place and the number of pegs of the correct colour in the incorrect
place. In effect, the second player is given partial information about the secret.
The player’s objective is to develop an efficient strategy to turn this information
into knowledge of the secret itself.

In practice, common sources of leaked information include error conditions
and codes. These can be explicitly revealed through a message or indirectly re-
vealed through timing patterns indicating the premature halting or abnormal
execution of an operation. Bleichenbacher [1] and Manger [6] have both pro-
posed attacks on the various RSA padding schemes: in these protocols an error
response, or the timing of an error response leaks information about the plain-
text, allowing a chosen ciphertext attack on RSA. Often such a leak is not visible
or not explicitly stated during design process but becomes visible during coding
or development. Sometimes one can readily determine that information leakage
is occurring, but not be able to clearly identify the semantics of the information
leaked, nor how it can be exploited.



Another example is the attack against ISO-0 standard for encrypting PINs
under DES described by Clulow in [5]. We briefly reproduce the description
of the attack to demonstrate the salient points relevant to our discussion. In
the ISO-0 standard, the PIN is formatted into an 8 byte buffer with control
information and padding. This buffer is then exclusive-ORed with the customer’s
Personal Account Number (PAN) before being encrypted under the DES key.
We represent this as {P ⊕ A}KB where KB is the key, P the formatted PIN
buffer and A the PAN. Whenever the encrypted PIN is verified or re-encrypted
under a different key, the process is reversed. As an intermediate step, the PIN
is extracted and an integrity check is applied. Since each digit of the PIN is
meant to be a decimal digit in the range 0 to 9, the check simply tests that
each hexadecimal PIN digit extracted from the decrypted buffer is less than ten.
Should this test fail, it means that either the PAN, key or encrypted PIN is
incorrect or corrupted.

Essentially, we can simplify this and represent it in a simple protocol that,
given a user specified value for the PAN (which we denote X), tests whether the
recovered PIN is decimal. For a single digit PIN, the protocol can be described
as follows.

A −→ B : X, {P ⊕A}KB
B −→ A : (P ⊕A)⊕X < 10

Fig. 1. The PIN Integrity Check Protocol

It was not necessarily the explicit intention of the authors of the ISO-0 stan-
dard to create this protocol, but it results as a consequence. At first glance, the
integrity check seems innocent and benign enough, and indeed perhaps a useful
addition that detects unintended errors. However, with a little thought it be-
comes obvious that repeated execution of this protocol with different values of
X quickly leads to the identification of the set {P, P ⊕ 1}. This can clearly be
seen from Figure 2. A given value of P ⊕A results in a unique pattern of passes
and fails.

The decimalisation attacks against PIN verification, described independently
in [5] and [4], similarly extract information from protected data. Again we briefly
detail a version of the basic attack that exploits the algorithm, shown in Fig-
ure 3, used to verify a PIN encrypted under a working key ({guess}WK) to
leak information. The personal account number (PAN), is encrypted under a
PIN Verification Key (PV K). The result is then decimalised using the user
supplied decimalisation table (dectab). This intermediate value is subtracted,
modulo 10, from the clear PIN and the resulting value compared to the supplied
value offset. If the values match, then the call passes and true is returned.
Normally, the offset is of limited length, typically four digits, and so only the
first four digits are compared.



P ⊕A
0,1 2, 3 4, 5 6, 7 8, 9

0,1 Pass Pass Pass Pass Pass
2,3 Pass Pass Pass Pass Fail
4,5 Pass Pass Pass Pass Fail

X 6,7 Pass Pass Pass Pass Fail
8,9 Pass Fail Fail Fail Pass
A,B Fail Pass Fail Fail Pass
C,D Fail Fail Pass Fail Pass
E,F Fail Fail Fail Pass Pass

Fig. 2. Table identifying the PIN using the PIN integrity Check Protocol

A −→ B : {guess}WK , {WK}KMK , PAN, {PV K}KMK , dectab, offset
B −→ A : true if guess = dectab({PAN}PVK) + offset

Fig. 3. The PIN Verification Protocol

The dectab can be thought of as a table of 16 decimal values, an example of
which is shown in Figure 4. The example table is interpreted as follows. The
hexadecimal character 0 is mapped onto 0. The hexadecimal character A is also
mapped onto 0. This dectab is written as 012345689012345.

Original Hexadecimal Digit 0 1 2 3 4 5 6 7 8 9 A B C D E F

Mapped Decimal Digit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Fig. 4. An Example Decimalisation Table

Consider the effect of changing a single value in the dectab. Suppose we
modify the first element and use the revised dectab 1123456789012345. If the
first four hexadecimal characters of the intermediate value {PAN}PVK do not
contain the character 0, then the modified dectab has no effect and the original
value of the offset will continue to pass. However, should it contain the character
0, each instance of this character will now get mapped to 1 (instead of the
original 0). This means that the original offset value will no longer pass. The
new value of the offset can be determined by iterating through the set of possible
offset values. This then allows the attacker to identify which digits changed and
hence to calculate the corresponding PIN digits. This attack again demonstrates
a scenario where secret data can be compromised, despite being encrypted.



3 Terminology

For our purposes, it is useful to categorize data into two classes, namely:

– weak data such as passwords, guessable secrets, other low entropy or non-
uniformly distributed data, and

– strong data that is random (or possessing no statistically significant distri-
butions), and has a sufficient range to be impractical to guess.

Low entropy-data is a common target of attack in fielded computer systems,
typically by means of guessing attacks that seek to brute force the secret. Our
approach here, is not a brute force search, but rather an incremental assimilation
of information that is slowly leaked.

We exploit techniques that allow us to partition the data into distinct, iden-
tifiable sets. By virtue of being able to identify the set membership, a non-
negligible amount of information can be extracted. For example, encrypted PINs
can be partitioned into distinct sets. Whilst we may not know the clear values of
the PINs given two encrypted PIN blocks, we can still categorise them using a
comparison for equality based upon the encrypted values. This particular tech-
nique makes use of what we call the visible storage of the secret. Visible storage
is at work in electronic code book and frequency analysis type attacks.

The second (more general) technique is manipulable testing in which a con-
figurable or parameterised test can be applied to the data and used to partition
the data set. The attacks listed in the previous section exploit this paradigm.
For example, the PIN integrity check offered a method for testing whether a
given hexadecimal digit was a member of the set of decimal digits. Similarly, the
decimalisation table attack tested the membership of the specified PIN based
on the configurable decimalisation table. Using this technique, the information
required to perform the partitioning is not available based on external storage,
but rather revealed through processing or testing and represents a form of in-
formation leakage. We further classify leakages as either inadvertent, such as
the decimal digit integrity check for PINs or intentional, such as through the
verification function.

We now consider some specific new examples of information leakage in finan-
cial APIs.

4 Persistent Problems with Decimalisation Tables

A number of PIN processing APIs support transactions which generate PINs
under a variety of algorithms, normally sending them to a secure printer.

However, many HSMs will also output generated PINs in encrypted form,
instead of sending them in the clear to a secure printer. Such a transaction is
useful for performing high-volume re-issue of PINs, where a bank’s printing facil-
ities are inadequate. In this scenario, the bank shares a top-level key by courier
with a special printing facility, then sets up a working key (WK) under which
the generated PINs are encrypted, in ISO-0 pinblock form. Such commands are



U −→ C : PAN, {PV K}Km1, offset
C −→ Printer : dectab({PAN}PVK) + offset

Fig. 5. The PIN Printing Protocol

present in the APIs of Thales RG series, Atalla NSP and nCipher payShield
APIs.

For the purposes of this paper, a generic financial “Encrypted PIN Generate”
protocol is described in Figure 6. It derives a PIN by encrypting a PAN with the
PVK (as described before), adds an initial offset, then stores it as an ISO-0 PIN
block. To discount the previously identified attacks, imagine that the default
decimalisation table (0123456789012345) is hardwired into the command, and
cannot be altered.

U −→ C : PAN, {PV K}Km1, {WK}Km2, offset
C −→ U : { (dectab({PAN}PVK) + offset)⊕ PAN }WK

Fig. 6. The Encrypted PIN Generation Protocol

4.1 Known Attacks

The facility to add an offset is known to introduce risks when combined with
other weaknesses. For instance, API designers are aware that should the en-
crypted PIN block corresponding to any trial PIN become known, it may lead to
discovery of the true PIN. By repeatedly executing the generate command, and
looping through the offset value an attacker could discover the offset which causes
the known block to be generated, and thus determine the difference between the
true PIN and the trial PIN. Practical countermeasures taken in operational en-
vironments include trying to segregate trial PINs (chosen PINs entered at an
ATM machine) from freshly generated PINs by encrypting them with a different
working key to that available for output of encrypted PINs, or by separating the
entire generation facility from the verification facility.

4.2 A Statistical Attack

However, there is another way in which encrypted PIN blocks can be identified.
If an attacker cycles through the offset field (offseti = i, i = 0000 . . . 9999), he
can assemble a list of all possible encrypted PIN blocks for a particular fixed
account, together with the relationship between each. The attacker stores tuples
of the form:

〈 offseti , {({PAN}PVK + offseti)⊕ PAN}WK 〉



However, he still does not know which are which. Before, the single chosen
trial PIN gave him a starting point from which to unravel, and he could use the
stored relationship to look up the offset between the trial PIN and the target
PIN. However, the heavy cost of a visit to an ATM is required per account
attacked, and furthermore, there must be interception software in place in the
live system. Instead, he can use the statistical distribution of PIN blocks as a
starting point, and unravel the values of the rest of the PIN blocks from there.

The ISO-0 PIN block format includes the PAN, so the same PIN encrypted
for different accounts will not be comparable, however, the format does not bind
the generated PIN to a particular PIN derivation key. Thus the attacker can
collect a large enough set of PIN derivation keys, perhaps by generating them
himself or through the use of conjuring techniques (see [2] for a description).
He uses each key to derive a ‘correct’ PIN from the fixed PAN of the target
account, keeping the offset constant, say at 0000. This generates a large set of
encrypted PINs with many collisions (that is, many have the same clear PIN
value, and hence, the same encrypted value). The encrypted PIN blocks are
visible and can be partitioned into sets based on the encrypted value (which
obviously corresponds to the clear PIN value).

Here is the trick: the derived PINs generated under different PIN derivation
keys will be biased in accordance with the decimalisation table. This creates a
unique frequency distribution of occurrence of encrypted PIN block outputs that
is reflected in the size of the partitions. Viewing these values in a histogram,
the more common PINs will become readily apparent. This accounts for the
requirement of having a suitably large set of keys. Combined with an ordering on
the encrypted PIN block values (the partitions), created by cycling through the
offsets, the attacker has everything he needs to discover PINs for that account.

To see more clearly, consider a simplified example using PINs of only one
digit. The action of the decimalisation table in the generation process causes
PINs 0,1,2,3,4 & 5 to be twice as likely as PINs 6–9. The chart on the left
in Figure 7 shows the ten possible PINs assembled in a loop (as offsets are
calculated modulo 10), each one higher than the previous. The depth of shading
represents frequency: 0–5 dark, 6–9 light. The chart on the right of Figure 7
shows (artificially shortened) encrypted PIN blocks corresponding to the ten
PINs. By cycling through offsets, they have been assembled into order, and by
generating PINs under a range of PVKs, the relative frequencies of generation
of each block have been marked with shading. It is easy to visually align the two
distributions and observe that the encrypted block 2F2C must correspond to a
PIN of 0.

The estimated transaction cost of such an attack is 10,000 for the loop, and
roughly 2,000–10,000 data samples to determine the distribution. With modern
transaction rates of around 300 transactions per second, this equates to about
30 seconds per PIN. The attack should work on any financial HSM where a
sufficient number of PVKs can be obtained.



0

1

2

3

45

6

7

8

9 21A0

73D2

536A

FA2A

FF3A0321

345A

2F2C

4D0D

21CC

+1 +1

Fig. 7. Cyclic frequency distributions of PIN digits and encrypted PIN blocks (higher
frequency shown in darker grey)

4.3 Implementation

We designed and implemented an algorithm employing this general principle us-
ing C code, with a software simulation of the HSM transaction. We found that
with 10,000 transactions the PIN could be accurately determined for an account
in a repeatable way. Our initial implementation in fact did not make full (in-
formation theoretic) use of the data returned, but applied some approximations
and heuristics to analyse the histograms.

Closer examination of the possibilities for algorithm design, revealed a trade-
off between effort conceptually spent creating a frequency distribution, and effort
spent interrogating it to determine the value of a particular digit. In fact, when
the single digit PIN example is generalised, because the offset is calculated mod-
ulo 10 independently for each digit, the loop alignment problem does not extend
to a larger loop, but along four separate axes (one could possibly extend the loop
analogy to visualise alignment in four dimensions – of hyper-tori?). We have yet
to develop an optimal algorithm, but given the additional constraints and details
of real HSM APIs, creating an optimal algorithm for a generic API command is
of little practical value.



5 ISO-0 Collision Attack

When we consider the overlap between the sets of all possible PIN blocks for
different PANs, we see that there are other non-uniformities. Because PINs are
generated over a range of digits 0–9, while the nibble datatype used to store
them ranges from 0–F, uneven distributions of encrypted PIN blocks can also be
observed in accordance with this characteristic. Consider a similar encrypted PIN
generation command to the one which is the subject of the attack in Section 4.

To aid with the explanation, this example is also restricted to single digit
PINs and PANs. Suppose that the attacker repeatedly generates PINs for some
fixed PAN, until all possible blocks have been observed. For our single digit PIN
example, this amounts to ten different encrypted blocks. This could be achieved
by repeating the PIN generation protocol (described earlier in Figure 6) with
different generation keys a sufficient number of times and then excluding the
repetitions from the list. A more efficient solution would be to make use of
the offset field. Increasing the offset by one with each subsequent call results
in a corresponding increase of one in the PIN value. Alternatively, a random
generation method could be used, an example of which is the VISA-PVV method
that is described later.

Again, the attacker can see the encrypted PIN blocks (visible storage), but
this time has neither their ordering, nor a known starting point. However, he
can perform a second generation run of the PIN space using a different PAN. We
use the notation PAN2 to denote the PAN associated with the second run. The
attacker can now compare the sets of encrypted PIN blocks resulting from the
two runs. Both runs contain all the PINs. However, the two runs used different
PANs which affects how the set of PINs are encrypted and stored. Recall that
the ISO-0 format exclusive-ORs the PIN with the PAN prior to encryption under
the working key. Now the exclusive-OR of many PINs with the PAN1 from the
first run will match the exclusive-OR of other PINs and the different PAN2 from
the second run. Whenever this occurs, the encrypted blocks will match as well
(that is, have the same value). Conversely, each encrypted PIN block that exists
in only one of the lists (wlog we assume the list from the first run), corresponds
to a value of PIN + PAN1 that is not achievable in the second run (that is, is
not an element of the set {0 + PAN2, 1 + PAN2, . . . , 9 + PAN2}). This allows
the attacker to determine a set of possible values for PIN + PAN1, and hence
for PIN .

We illustrate this technique with a numerical example. The attacker has
constructed the two lists of all the possible encrypted blocks for the accounts
with PANs 7 and 0, as shown in Figure 8.

He can easily observe that the encrypted block AC42 from the left hand list
does not occur in the right hand list, and likewise for the encrypted block 9A91.
Therefore, he knows that this encrypted block corresponds to a combination of
PIN and PAN which cannot be produced by exclusive-ORing with a PAN of 0.
Given the PAN of 7 on the target account, he can deduce that the corresponding
PIN to AC42 is either 8 or 9. This deduction is the same as that performed



PAN PIN (PAN⊕PIN) Encrypted PAN PIN (PAN⊕PIN) Encrypted
Block Block

7 0 7 2F2C 0 0 0 21A0

7 1 6 345A 0 1 1 73D2

7 2 5 0321 0 2 2 536A

7 3 4 FF3A 0 3 3 FA2A

7 4 3 FA2A 0 4 4 FF3A

7 5 2 536A 0 5 5 0321

7 6 1 73D2 0 6 6 345A

7 7 0 21A0 0 7 7 2F2C

7 8 F AC42 0 8 8 4D0D

7 9 E 9A91 0 9 9 21CC

Fig. 8. Sets of encrypted all PIN blocks for accounts with PANs 7 and 0

in the ISO-0 PAN modification attack [5], and hence has the same associated
restrictions.

6 PVV Clash Attack

The VISA Pin Verification Value (PVV) method for processing customer PINs
has advantages over the IBM 3624 method in that it can use an unbiased ran-
dom number source to generate the PINs themselves. This is immediately ad-
vantageous when considering storage scenarios for encrypted PINs. However, the
verification method has a peculiar property. The first stage of the verification
process is to construct a transaction security parameter (TSP), consisting of the
PAN, an issue number referring to which PIN derivation key is to be used, and
the trial PIN itself. The TSP is then encrypted with the PIN master key, then
truncated and decimalised, yielding a four digit “PIN Verification Value” which
can be stored in the clear in the banks main database, or written to the magnetic
stripe on an ATM card itself.

The weakness is simple: due to the short length of the PVV, and considering
the encryption function as a random oracle, the birthday paradox ensures that
multiple transaction security values will produce the same PVV as a result. In
practical terms, there will be several correct PINs for each account! Approxi-
mately 60% of accounts will have two or more correct PINs. Furthermore, about
0.5% of accounts have five or more correct PINs – an corrupt insider could use
PVV generation transactions to observe clashes taking place, and pass on details
of the weaker accounts to outsiders.

In practice, because accounts with ten or more correct PINs are very rare,
this weakness of the algorithm is of limited practical value; however the legal
implications of having multiple correct PINs for an account are interesting, and
completely uncharted territory. Interestingly, Opel reports the successful use of
two different PINs to withdraw money from an ATM using a VISA credit card [7],



in what could possibly be the first documented case of a PVV clash out ‘in the
wild’.

7 Towards Solutions

Laying down advice for designers developing brand new systems should not be
too hard. When the nature of data to be processed is within the domain of
the designer, for instance if they are choosing secrets to store for authentica-
tion purposes, it is clear that strong secrets should be used whenever possible.
Weak secrets, whether too short, or with non-uniform statistical distributions
are inherently at risk, especially when considering the necessary leakage of the
authentication verification function. The designers may also include standard
intrusion detection features such as rate limiting, or lock-out to limit informa-
tion leakage through authentication verifications. When processing data, new
systems should avoid data-dependent error codes and timing characteristics. In
particular, any error which can be thrown after unauthenticated inputs have
been combined with authenticated ones should be carefully scrutinised for leak-
age. Data storage formats should follow the usual best practices – in particular
encryption should be randomised to prevent comparison of ciphertext blocks,
and MACs should be used for integrity.

Shoring up existing systems against information leakage through APIs and
protocols is a much harder proposition. The weak secrets to be protected may
be core assets (as with encrypted databases of personal data), and not easily dis-
carded and regenerated. Alternatively, they may once have been arbitrary, but
now are irreversibly entrenched. Indeed, as far as financial PIN processing sys-
tems are concerned, the cost of distribution of new PINs may be prohibitively
high, and upgrade of an individual bank’s system may only be possible if in-
teroperability can be maintained. The designers thus have a much harder task
in regulating information flow, when they must hide the weakness of the data,
and have constrained cryptographic resources to do so. It seems clear that ran-
domised encryption would be beneficial for PIN storage, and there is evidence of
a move toward this: the ISO-0 PIN block may soon be superseded by the ISO-3
format, which includes further randomisation. However, increasing the storage
format up from a single 8-byte block to allow a cryptographic hash for integrity
is simply out of the question. One must be very careful when proposing minimal
fixes to a system: generic problems usually require generic fixes.

The hardest information leakage problems are those associated with limiting
the rate of leakage when there is already an intentional leak. This extends be-
yond verification of authentication data into encrypted database query, where
the data returned in unencrypted form may be many hundreds of bits, and could
potentially leak a huge amount of information. Our hope is that existing exper-
tise from other areas of computer science, such as information flow in multi-level
secure systems, and anonymisation of statistics during information retrieval can
be brought to bear to increase understanding about information leakage in se-
curity protocols and APIs.



8 Conclusions

We have shown that information leakage attacks pose a significant threat in
the realm of security APIs and protocols, as well as in the wider context where
they are already well-known. In particular, we documented several new attacks
on APIs for financial PIN processing systems that supersede the best previous
strategies, and show that some of the dangerous architectural features cannot
be made secure without applying truly generic fixes.

9 Acknowledgments

We would like to thank George Danezis for his help and advice, and acknowledge
the generous funding of the CMI Institute and the Cecil Renaud Educational
and Charitable Trust.

References

1. D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1”, Proceedings of the 18th Annual International
Cryptology Conference on Advances in Cryptology, Springer LNCS 1462, p. 1–12,
1998

2. M. Bond “Attacks on Cryptoprocessor Transaction Sets”, CHES 2001, Springer
LNCS 2162, p. 220–234

3. M. Bond “Understanding Security APIs”, Phd. Thesis, available at the URL
http://www.cl.cam.ac.uk/users/mkb23/research.html, 2004

4. M. Bond, P. Zielinski “Decimalisation Table Attacks for PIN Cracking”, University
of Cambridge Computer Laboratory Technical Report TR-560, Jan 2003

5. J. Clulow “The Design and Analysis of Cryptographic Application Pro-
gramming Interfaces”, MSc. Dissertation, University of Natal, South Africa,
http://www.cl.cam.ac.uk/users/jc407/, 2003

6. J. Manger, “A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryp-
tion Padding (OAEP) as Standardized in PKCS #1 v2.0”, Proceedings of the 21st
Annual International Cryptology Conference on Advances in Cryptology, Springer
LNCS 2139, p. 230–238, 2001

7. T. Opel, Private communication. Forthcoming description at the URL
http://www.kreditkartendiebe.de/


