
Security APIs:
The last word on ATM security?

The first word on TC?

Mike Bond
Computer Security Group

Royal Holloway Information Security Group 11th May ‘04

Talk Structure
• Introducing Security APIs
• Discovering Security APIs: ATM security

– ATM Security Basics
– Early attacks on Financial HSMs
– Finding Faults in Type Systems
– Problems with DES
– Information Leakage Attacks

• The Future of Security APIs : Trusted Computing
– “Digital Battlefields”
– Getting formal

• Conclusions

What is a Security API ?
• An API that allows users to work with sensitive

data and keys, and uses cryptography to enforce
a policy on the usage of data

Host
PC or Mainframe

Security Module
PCI Card or Separate Module

Security API

VDU

I/O Devs

Network

Who Needs Security APIs ?
• Those who need to enforce access policies to sensitive

information
Example: Granting signing permission at a Certification Authority

• Those who need to protect mission critical sensitive data
Example: Protecting PIN generation keys at banks

• Those who need to protect data in hostile environments
Example: Protecting Token Vending Machines (Electricity, National Lottery etc…)

• Those with high crypto throughput requirements
Example: SSL acceleration for webservers

Research into Security APIs
• Some work in early 90s using prolog style search to

find attacks, but few documented attacks
• Work started in 2000 at University of Cambridge with

analysis of Hardware Security Modules used in banks
to protect PINs for ATMs

• New work found many more attacks, and produced
first significant catalogue of API failures

• Scope has been broadened to include security modules
used by certification authorities and also general
purpose crypto libraries (e.g. PKCS#11, Chrysalis-ITS
Luna CA3, nCipher nCore and payShield APIs)

• Latest work revisiting financial APIs examining PIN
generation and verification procedures

The Simplest Security API

Plaintext Ciphertext

Km
P {P}Km

Protocol Notation

A -> B : { X }K1 , { KS , A , B }K2

Sender

Recipient Data Key
Concatenation

Encryption

• Informal notation, common in textbooks

Example Security API Commands
U->C : { A }KM , { B }KM
C->U : { A+B }KM

U->C : GUESS , { ANS }KM
C->U : YES (if GUESS=ANS else NO)

U->C : { X }K1 , { K1 }KM , { K2 }KM
C->U : { X }K2

Example Type Diagram
TYPE A

TYPE B

TYPE FTYPE E

TYPE D

TYPE C

Contains terms
of the form { X }K-TYPE-E

Transaction

U->C : { X }K-TYPE-D
C->U : { X }K-TYPE-F

Hardware Security Modules
• An instantiation of a security API
• Often physically tamper-resistant

(epoxy potting, temperature & xray sensors)

• May have hardware crypto acceleration
(not so important with speed of modern PC)

• May have special ‘trusted’ peripherals
(key switches, smartcard readers, key pads)

(referred to as HSMs subsequently)

Hardware Security Modules

Why ATM Network Security?
• ATM security was the “killer-app” that brought

cryptography into the commercial mainstream – so
long history of financial API development

• Concrete and simple security policy for APIs:
“Only the customer should know her PIN.”
“Keys protecting PINs may only be manipulated when
authorised by two different employees.”

• IBM made CCA manual publicly available
– Excellent detailed description of API
– Good explanation of background to PIN processing APIs
– Unfortunately: lots of uncatalogued weaknesses.

ATM Security Basics
• The crucial secret is the customer PIN. The customer

should be the only person that knows the value of
this PIN

• PINs need to be protected from malicious insiders
and outsiders

• PINs must be protected when generated, in storage,
when issued to customers, when travelling via the
international ATM network, and when being verified

• To this end, banks use Hardware Security
Modules (HSMs) to perform cryptography and
implement a policy which prevents both insiders and
outsiders from gaining unauthorised access to PINs.

Security Modules in Banks

Issuing Bank
Regional HQ

HSM

ATM

Acquiring
Bank

Issuing
Bank

ATM Network

HSM

HSM

HSM

HSM

HSM with
keypad HSM

HSM

HSM

Start with your bank account number (PAN)

5641 8203 3428 2218

Encrypt with PIN Derivation Key
(aka PMK – Pin Master Key)

22BD 4677 F1FF 34AC

Chop off the (B->1)
End 2213 (D->3)

How are PINs Generated ?

decimalise

What’s a Decimalisation Table ?
• Remember encrypted result was in hexadecimal?
• Encryption produces output that looks uniformly

distributed, so 0-F are all equally likely
• Decimalisation Table used to map 0-F back to 0-9

digit in 0123456789ABCDEF
digit out 0123456789012345

e.g. 22BD -> 2213

• Because some numbers have several hexadecimal
digits mapped to them, they are more likely to occur
in issued PINs than others

Collecting Frequency Distributions

0

2

4

6

8

10

12

14

16

18

20

22

24

0 1 2 3 4 5 6 7 8 9

Example Distribution : HSBC

Sample size: 45 people (just large enough to prove non-uniform hypothesis with 1% conf)

How do I change my PIN?
• Most store an offset between the original derived

PIN and your chosen PIN
• Example bank record…

– PAN 5641 8233 6453 2229
– Name Mr M K Bond
– Balance $1234
– PIN Offset 0000

• If I change PIN from 4426 to 1979, offset stored is
7553 (each digit is independent modulo 10)

• Some systems do work completely differently.
You choose your PIN at the outset in these.

Early Attacks on Financial HSMs

XOR To Null Key Attack
• Top-level crypto keys exchanged between banks in

several parts carried by separate couriers, which are
recombined using the exclusive-OR function

Source
HSM

Dest
HSM

KP1

KP2

Repeat twice…

User->HSM : Generate Key Component
HSM->Printer : KP1
HSM->User : { KP1 }ZCMK

Combine components…

User->HSM : { KP1 }ZCMK , { KP2 }ZCMK

HSM->User : { KP1 xor KP2 }ZCMK

Repeat twice…

User->HSM : KP1

HSM->User : { KP1 }ZCMK

Combine components…

User->HSM : { KP1 }ZCMK , { KP2 }ZCMK

HSM->User : { KP1 xor KP2 }ZCMK

XOR To Null Key Attack
• A single operator could feed in the same part twice,

which cancels out to produce an ‘all zeroes’ test key.
PINs could be extracted in the clear using this key

Combine components…

User->HSM : { KP1 }ZCMK , { KP1 }ZCMK

HSM->User : { KP1 xor KP1 }ZCMK

KP1 xor KP1 = 0

Offset Calculation Attack
• Bank adds a new command to the API to calculate the

offset between a new generated PIN and the customer’s
chosen PIN

• Possessing a bank account gives knowledge of one
generated PIN. Any customer PIN could be revealed by
calculating the offset between it and the known PIN

U->C : Old PAN, Old offset, New PAN

C->U : New offset

Type System Attack
• ATMs are simpler than HSMs and have only one master

key. ATMs need to be sent Terminal Communications
keys (session keys) for link cryptography.

HSM ATM

Master Keys
TC – terminal communications
TMK – terminal master keys & PIN derivation keys
ZCMK – zone control master keys (between HSMs)
WK – working keys (session keys)
LP – local PIN storage key

Master Key
TMK-ATM - used for everything

{ TC1 }TC { TC1 }TMK-ATM
but how?

TC1

Type System Attack (2)
• PIN derivation keys (PDKs) share the same type as Terminal

Master Keys (TMKs), and encrypting communication keys for
transfer to an ATMs uses exactly the same process as calculating
a customer PIN – encryption with single DES.

User->HSM : TC1

HSM->User : { TC1 }TC

User->HSM : { TC1 }TC , { TMK-ATM }TMK

HSM->User : { TC1 }TMK-ATM

The attack…

User->HSM : PAN

HSM->User : { PAN }TC

User->HSM : { PAN }TC , { PDK1 }TMK

HSM->User : { PAN }PDK1

VSM Type Diagram

Type System Attack (Graphical)

Problems With DES

• A thief walks into a car park and tries to
steal a car...

• How many keys must he try?

Car Park Analogy 1900

Car Park Analogy 2000

The Meet in the Middle Attack
• Common sense statistics
• Attack multiple keys in parallel
• Need the same plaintext under each key
• Encrypt this plaintext to get a ‘test vector’
• Typical case: A 256 search for one key becomes a

240 search for 216 keys
• Poor implementations of 3DES key storage allow

3DES key halves to be attacked individually

MIM Attack on DES Security Modules

40 bits16 bits

• Generate 216 keys
• Encrypt test vectors
U->C : { KEY1 }KM
C->U : { 0000000000000000 }KEY1

• Do 240 search
Cryptoprocessor’s Effort Search Machine’s Effort

56 bit key space

MIM Attack on Triple-DES HSMs
EK(DK(EK(KEY) = EK(KEY)

A A

X Y

A A B B

A B

A Single Length Key

Double Length “Replicate”

Double Length

Information Leakage Attacks
• Remember PINs derived from account numbers
• Hexadecimal raw PIN is converted to decimal using

decimalisation table
• Most APIs allow the decimalisation table to be specified

with each PIN verification command
• A normal verification command eliminates one of

10,000 combinations of PIN for the attacker.
• If the table is altered, whether or not the alteration

affects correct verification leaks much more information
about the PIN

examples…

(Bond/Clulow 2002)

Decimalisation Table Attack (1)

PIN_Verify

Yes/No
(eliminates 1 combination)

0123456789ABCDEF

0123456789012345

Trial PIN
0000

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 2213
3. Verify
0000 != 2213

Decimalisation Table Attack (2)

PIN_Verify

Yes/No
(eliminates all PINs containing digit 7)

0123456789ABCDEF

0000000100000000

Trial PIN
0000

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 0000
3. Verify
0000 = 0000

Decimalisation Table Attack (3)

PIN_Verify

Yes/No
(shows PIN contains digit 2)

0123456789ABCDEF

0010000000000000

Trial PIN
0000

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 1100
3. Verify
0000 != 1100

Decimalisation Table Attack (4)

PIN_Verify

Yes/No
(no information)

0123456789ABCDEF

0123456789012345

Encrypted Trial PIN
{2213}KM

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 2213
3. Verify
2213 = 2213

Decimalisation Table Attack (5)

PIN_Verify

Yes/No
(eliminates PINs containing digit 7)

0123456789ABCDEF

0123456089012345

Encrypted Trial PIN
{2213}KM

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 2213
3. Verify
2213 = 2213

PAN Modification Attack (1)
• Encrypted PINs transferred from ATM to issuing bank

via ATM network using point to point encryption
• At each node PIN block must be decrypted with

incoming key, and re-encrypted with outgoing key
• Common ISO standard “binds” PIN to particular

customer by exclusive-ORing PAN with PIN before
encryption

• Attack: specifying incorrect PAN may make deduced
PIN contain hexadecimal digit ‘A’-’F’, which causes
formatting error. Conditions under which formatting
error arises leaks information about PIN.

(Clulow 2002)

PIN Block Formats

041234FFFFFFFFFF

xor

0000820363452239

=
0412A6FC9CBADDC6

Primary Account Number (PAN)
5461 8203 6345 2239

IS0-0

IS0-2

padding

PIN
PIN length

241234FFFFFFFFFF

Format ID

PAN Modification Attack (2)

PIN_Translate

{PIN Block}AWK (or FORMAT ERROR)

Format

Info
PAN{IWK}KM {AWK}KM {PIN Block}IWK

PAN Modification Attack (3)
041234FFFFFFFFFF

xor

0000820363452239

=

0412B6FC9CBADDC6

7698BADCFEE

45AB89EFCDD

54BA98FEDCC

23CDEF89ABB

32DCFE98BAA

01EFCDAB899

6789ABCDEFF

10FEDCBA988

EF012345677

FE103254766

CD230167455

DC321076544

AB456701233

BA547610322

896 74523011

98765432100

9876543210
PIN

PAN

0412B6FC9CBADDC6

xor

0000820363452239

=

041234FFFFFFFFFF

0412B6FC9CBADDC6

xor

0000720363452239

=

0412C4FFFFFFFFFF

construction
of PIN block

correct PAN
removed

modified PAN
Removed – PIN
contains ‘C’ –
error

Encrypted PIN Generate

Encrypted_PIN
Generate

0123456789ABCDEF

0123456789012345

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 2213
3. Add Offset
PIN + 0000 = 2213
3. Format as ISO-0 PINblock
042213FFFFFFFFFF

xor
0000820334282218
3. Encrypt block under WK
FA28CF742A3C08A5

Encrypted WK
7C5275F4F2CF885

FA28CF742A3C08A5

fixed

Offset
0000

Collecting Frequency Distributions

5323AB35C00273BB

2E6892FC328D5212

104AE02F763A56DF

EA4118F2C0AB3AC6

FD29DA10029726DC

Output Frequency

042315FFFFFFFFFF
xor

0000820362342219

14E247F78EA876A0

046467FFFFFFFFFF
xor

0000820362342219

66F7604EB263543C

041522FFFFFFFFFF
xor

0000820362342219

9E760AF7F34EFA10

049106FFFFFFFFFF
xor

0000820362342219

23AD73218F2C0AB1

043328FFFFFFFFFF
xor

0000820362342219

0D7604EBA10AC7F3

PIN BlockPMK

Next… assemble distribution in a loop (mod 10)

Encrypted PIN Generate

Encrypted_PIN
Generate

0123456789ABCDEF

0123456789012345

PAN
5641820334282218

Encrypted PMK
48CCA975F4B2C8A5

1. Encrypt PAN
Raw PIN = 22BD
2. Decimalise
Natural PIN = 2213
3. Add Offset
PIN + 0000 = 2213
3. Format as ISO-0 PINblock
042213FFFFFFFFFF

xor
0000820334282218
3. Encrypt block under WK
FA28CF742A3C08A5

Encrypted WK
7C5275F4F2CF885

FA28CF742A3C08A5

fixed

Offset
0000
0001
0002
0003
0004
0005
...

Aligning Frequency Distributions

(four alignment problems along orthogonal axes…)

The Last Word on ATM Security?
• We have come along way since the first flaws in

PIN processing systems were put in the public
domain

• In Europe, this entire architecture may be on the
way out, as EMV (“Chip and PIN”) is phased in

• Could these be the last published attacks on PIN
processing systems?

• Banking security is concerned as much with risk
and liability as with cryptographic security – there
may be more to learn in fields where
cryptographic security is a higher priority

• What next for Security API research?

The First Word on Trusted Computing?
• Trusted Computing proposals put simple

hardware security modules in every PC
• TC also encourages compartmentalisation

of applications into trusted and untrusted
components – just like the evolution of
ATM security

• Security API research may be able to help
the designers of these interfaces avoid the
worst mistakes, or maybe even make the
interfaces secure?

A double-edged sword?
• IRM – Information Rights Management

– Companies can stop leaks
– Mafia can keep their records secret

• DRM – Digital Rights Management
• Trusted IO – Enter your ATM PIN at your PC
• Global PKI – All devices potentially indentifiable
• Trusted Anonymity Systems
• Truly Anonymous peer-to-peer systems
• High-availability systems
• Reverse-engineering resistant viruses

Example: Information Rights Management
• Microsoft Office 2003 with

Microsoft Rights Management Server
• Will it be secure when supported by TC?

The “restrict” button

“The Digital Battlefield”

O/S Nexus

App1

App2

NCA1

NCA2

DriversServices

TPM / SSCHardware

Ring 1

Ring 0

Ring 2+

“The Digital Battlefield”

O/S Nexus

DRM App

App2

DRM NCA

NCA2

DriversServices

TPM / SSCHardware

Ring 1

Ring 0

Ring 2+

“The Digital Battlefield”

O/S Nexus

DRM App

MyApp

DRM NCA

MyNCA

DriversServices

TPM / SSCHardware

Ring 1

Ring 0

Ring 2+

“The Digital Battlefield”

O/S (hacked) Nexus

DRM App

MyApp

DRM NCA

MyNCA

DriversServices

TPM / SSCHardware

Ring 1

Ring 0

Ring 2+

“The Digital Battlefield”

O/S (hacked) Nexus

DRM App

MyApp

DRM NCA

MyNCA

DriversServices

TPM / SSCHardware

Ring 1

Ring 0

Ring 2+

Getting Formal
• How are we going to survive on this ‘battlefield’ if

all our technology is for attack, not defence?
• So far we only have heuristics for understanding

how to design Security APIs, but there are important
properties we would like to gain assurance about
(in formal speak: “prove”)

• Formalising the specification of Security APIs could
help make properties clearer

• Semi-automated analysis of specifications could
assist gaining assurance, locating vulnerabilities, and
enumerating all instances of vulnerabilities

Example Pages from IBM Manual

First Steps: Theorem Proving
• Predicate U(x) represents adversary knowledge;

implications represent adversary gaining knowledge
through transactions. Manual pages from previous
slide condensed:

U(e(x,xor(k,t))) & U(e(k,xor(km,imp) ->
U(e(x,xor(km,t)))

• We assert that there is an attack, and challenge the
tool to prove it

U(a_secret).

Early Results
• Driving theorem provers is difficult – a whole new

world of terminology and expertise to be learned,
made more difficult because the tools are highly
abstract.

• In the right hands, the tools are powerful: we can
model all known “pure” API attacks (not involving
properties of crypto)

• It already looks like theorem proving will be useful
for enumerating all instances of a general attack
method e.g. “type-casting” on the IBM 4758 CCA

• We hope to enumerate all ‘Meet-in-the-Middle’
attacks on a security API next

Conclusions
• We have learnt a lot from analysing ATM security,

but there is still much much more to do…
• If and when Trusted Computing arrives on our

desktops, Security APIs will not be a specialist
backwater of protocol analysis, but an integral part
of secure application design

• We are making the first steps to try and bring order
and sense to the catalogue of attacks on existing
Security APIs, and there is plenty of room for more
research, which might have a real impact on the
long-term success of Trusted Computing.

More Information
Papers, Links & Resources

http://www.cl.cam.ac.uk/~mkb23/research.html
http://www.cl.cam.ac.uk/~jc407/

Attacks on IBM 4758 CCA & Hardware Cracker

http://www.cl.cam.ac.uk/~rnc1/descrack/

Phantom Withdrawals and Banking Security

http://www.cl.cam.ac.uk/~mkb23/phantom/

I am around for the rest of the afternoon…

Email… Mike.Bond@cl.cam.ac.uk

