Model Checking Cryptoprocessors
(or “Why I Like the British Museum")

Mike Bond

2.8 UNIVERSITY OF Computer Laboratory
P CAMBRIDGE

Computer Laboratory

12th November 2002

The Problem : Analysing Security APIs
Protocol Analysis Tools

The Formalisation Step

Experiments with SPASS

The “MIMSEARCH” Tool
Implementation Tour

Results & Conclusions

What is a Security API?

security APIs

* Found at trust boundary of tamper-resistant
processors which use cryptography to control
processing of and access to sensitive data

I/0O Devs
Network

Security API

Why Automate API Analysis?

APIs are getting more complex — more human

effort required, and few skilled people
- VSM Banking API ’89 — 80 pages
- CCA Banking API ’02 — 458 pages

Can make finding attacks quicker

Can spot stupid mistakes at once

Might one day find an attack of its own accord?
Can search for all instances of a known attack
Operating tool can help build intuitive knowledge

Protocol Analysis Tools

CAPSL
N-PATRL
Casper
Inductive NRL
Method CSP Analyser

Kronos

Isabelle SPASS| Spin SMV ~ FDR | Prolog

UPPAAL HyTech

Theorem Provers Model Checkers Search Tools

NS R

Read specification (or instruction manual)
Decide on primitives required

Choose analysis tool supporting primitives
Formalise each command

Test against known attacks

Patch to prevent known attacks

Search for unknown attacks

Data_Key_Import

Data_Key_Import (CSNBDKM)

Platform/ 0s/2 AIX NT 0S/400
Product
| IBM 4758-1 X X X X

The Data_Key_Import verb imports an encrypted, source DES DATA key and
creates or updates a target internal key token with the master-key enciphered
source key. The verb can import the key into an internal key token in application

| storage or in key storage. This verb, which is authorized with a different control

| point than used with the Key_Export verb, allows you to limit the export operations

| to DATA keys as compared to the capabilities of the more general verb.

Specify the following:

+ An external key token containing the source key to be imported. The external
key token must indicate that a control vector is present; however, the control
vector is usually valued at zero.

Alternatively, you can provide the encrypted data key at offset 16 in an
otherwise all X'00' key token. The verb will process this token format as a
DATA key encrypted by the importer key and a null (all zero) control vector.

An IMPORTER key-encrypting key under which the source key is deciphered.

An internal or null key token. The internal key token can be located in
application data storage or in key storage.

The verb builds the internal key token by the following:

» Creates a default control vector for a DATA key type in the internal key token, if
the control vector in the external key token is zero. If the control vector is not
zero, the verb copies the control vector into the intemal key token from the
external key token.

.

Multiply-deciphers the key under the keys formed by the exclusive-OR of the
key-encrypting key (identified in the importer_key._identifier) and the control
vector in the external key token, then multiply-enciphers the key under keys
formed by the exclusive-OR of the master key and the control vector in the
intemal key token. The verb places the key in the internal key token.

* Calculates a token-validation value and stores it in the internal key token.

This verb does not adjust the key parity of the source key.

Restrictions
None

Chapter 5. CCA DES Key Management 519

Data_Key_Import

Format
return_code Output Integer
reason_code Output Integer
exit_data_length In/Qutput Integer
exit_data In/Output String exit_data_length bytes
source_key._token Input String 64 bytes
importer_key._identifier Input String 64 bytes
target_key_identifier In/Output ~ String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and exit_data
parameters, see “Parameters Common to All Verbs” on page 1-10.

source_key_token
The source_key._token parameter is a pointer to a 64-byte string variable
containing the source key to be imported. The source key must be an external
key.

importer_key_identifier
The importer_key._identifier parameter is a pointer to a 64-byte string variable
containing the (IMPORTER) transport key used to decipher the source key.

target_key_identifier
The target_key_identifier parameter is a pointer to a 64-byte string variable
containing a null key token, an internal key token, or the key label of an internal
key token or null key token record in key storage. The key token receives the
imported key.

Required Commands
The Data_Key_Import verb requires the Data Key Import command (offset
X'0109') to be enabled in the hardware.

5-20 1BM 4758 CCA Services, V1

----1---r-.-—-

Application Developer's Manual Page 6.13

The following transactions are used to translate PINs, that is, to
decrypt an encrypted PIN block and re-encrypt it under another key.
During the process, the PIN block format itself may be changed if
desired.

These transactions are used on interchange networks. For example, if
a foreign cardholder uses your ATM, the ATM typically makes his PIN
up into a PIN block, encrypts it under a local key (a terminal PIN
key) and sends it to you. You then use 'CA' to translate this PIN
block from the local key to the acquirer working key you currently
use with the switch in question.

Note that you don't use a communication key to encrypt PINs on the
ATM link, since then one of your application programmers could write

code to determine the PINs of other institutions! cardholders -
precisely the type of attack the is designed to thwart.

TRANSACTIONS CA/CC - TRANSLATE A PIN

Host Message:

Field Type Description

Header 4 Alpha Returned unchanged

Trancode 2 Alpha 'CA' - translate from a local key to an
interchange key
'CC' - translate from one interchange

key to another

Source key 16 Hex CA: the local key encrypted under keys

14 & 15
CC: any interchange key encrypted under
keys 6 & 7
Destination {16 Hex The interchange key (eg AWK) encrypted
key under keys 6 & 7
Filler 2 Decimal r12!
Source PIN 16 Hex The PIN block encrypted under the
block source key
Source PIN 2 Decimal The format of the source PIN block -
format these are detailed in the appendix
Destination {2 Decimal The format to which you want the PIN
PIN format block to be converted
Account no. |12 Decimal The 12 rightmost digits of the account

number, excluding the check digit

Application Developer's Manual Page 6.14

Response Message:

Field Type Description AT
Header 4 Alpha Returned unchanged
Trancode 2 Alpha 'CB' in response to CA
'CcD' in response to CC
Return code |2 Decimal One of the N3000SM return codes
PIN length 2 Decimal Length of the returned PIN
PIN block 16 Hex Encrypted under the destination key
PIN format 2 decimal 'Destination PIN format' above

Note: the PIN formats in brief are 0l: ANSI; 02: Docutel I; 03: IBM/
Docutel IT. FNB, Saswitch and VISA currently use format 03.

The rest of the transactions in this chapter are for translating
various keys.

TRANSACTION FA - RECEIVE A WORKING KEY FROM A SWITCH

Host Message:

Field Type Description

Header 4 Alpha Returned unchanged

Trancode 2 Alpha 'FA!

ZCMK 16 Hex Encrypted under master keys‘4 &5
Key (ZCMK) 16 Hex The working key from the switch,

encrypted under the ZCMK

Response Message:

Field Type Description

Header 4 Alpha Returned unchanged

Trancode 2 Alpha 'FB'

Return code |2 Decimal One of the N3000SM return codes

The working key, encrypted under 6 & 7

Key (KM) 16 Hex

TMK/PIN

J WK

ZCMK 1

| TMK I

(RAND)

TC

ZCMK
WK_I LP
(CLEAR) TC I

U->C : { D }ygs » { WKL }ux » { WKZ }iy
C—=>U : { D }WKZ

formula(forall ([X,Y,Z], implies (
and (public (X),and (public (Y),public(z))) , public(
enc (enc (i(wk),Z),enc(i(enc(i(wk),Y)),X))))

A=< ({X}Y, {Y WK, {2 }IWK)>.?2x).[x={X1Y]

B=7?2(x) . case x of ({wyly, {y WK, { z }WK) in !< { w }z > .

0

Cmd "CC_Data_Translate_Between_Interchange_Keys"
Input ENC (ANY, ANY)
Input ENC (WK, ANY)
Input ENC (WK, ANY)

Output ENC(DEC (WK, TWO) , DEC(DEC(WK,ONE) , ZERO))

End Cmd

Protocol-Speak

API-Speak

already...
Protocol Messages

also...

Environment
Attacker’s Abilities
Security Requirements
of Runs of Protocol

of Concurrent Runs

Command Definitions

Initial Knowledge
N/A

Initial Goals
Search Depth
N/A

SPASS used 1n 1ts capacity as a first order

logic (FOL) theorem prover

Predicate ‘public’ used to define commands

and knowledge e.g.

public (input) => public(f (input))

Try to prove assertion
Sit back and waitt...

public (a_secret)

SPASS START ————————————————————————

PING
PING
PING
PING
PING
PING
PING

PING
PING
PING
PING
PING
PING
PING

PING
PING
PING
PING
PING
PING
PING

Why SPASS is Unsuitahle

Insufficient runtime feedback
Insufficient documentation

Too many (unexplained) parameters to
tweak — over 90 command line options

SPASS correctly rediscovered every step
and pair of steps of an attack, but could not
discover the attack all in one go

Unclear how to best re-express the problem

Other Tools?

e Wide choice (15-20 tools)

e (Quality of documentation variable; many
concentrate upon the tool’s application to a
particular specialised problem

e Decided to learn from building my

own tool ...

“the only way to understand the

wheel is to reinvent it”

Mimsearch Tool : Goals

Learn about strengths and weaknesses of model
checkers and theorem provers through comparison
with a well understood example

Improve ability to effectively use existing tools
through better understanding of their internal
working

Determine the minimum complexity of models
that can capture all known API attacks

Create a tool powerful enough to reason about

financial APIs, especially those using control
vectors (1e. XOR)

Mimsearch Tool : Non-Goals

e Produce a tool more powerful than tool X

e Produce a better documented tool than tool X

e Produce an implementation for public release

| —
//Lookup
Hash Hash
Table Table

|

Lookup |

“The British Museum”

Bl

B4

Stairs

DB 1o 24

West East
ift ls
ﬁ/ _\
[|
AN

.-"-’ -] ™

Clare Educatsan Centre

I South lifts
Ford Centre for Youmg 'U'-'!-II‘EH'S

south | 35
stairs [

L

i -ﬁ** - Stairs
—— il o Creat
m_ BLE m Court

Mantague Mlace Entrance

Morth
stairs

Masn Entrance Britash Museum
Creat Russell Street Friends’ Roome

Gore ldeas : Summary

Attack the state space from both directions

Minimise the number of heuristics: “Intelligent”
search damages state space, and reduces chance of
finding new attacks

Accurately measure the state space: more accurate
bounds mean more accurate assessment of security

Native support for XOR and cryptographic
primitives

Understand the search : proper diagnostics should
be available to all users

Impiementation Tour

Problem Specification

Symbolic Term Manipulation Engine
Search Threads

Reverse Execution

Hash Tables

Distributed Computing Support

Diagnostics

Begin_Transaction_Set ("4758-testset")

Begin_Cmd_List

End_Cmd_List <L-‘__‘-““‘——-—___________
Begin_Reverse_Cmd_List

End_Reverse_Cmd_List "‘““‘—-———-ﬁ____________I)efhlﬁjons<3f

Begin_Atom_List Command Inverses

End_Atom_List <L————_______________“-_‘)
List of Atoms

Begin_Attack

Definitions of Commands

Begin_Initial_Knowledge_List

End_Initial_Knowledge_List “\\\\\\\\ . .
Starting Point

Begin_Initial_Goal_List

End_Tnitial Goal List ‘\\\\\\\\\

Search_Depth 3

Goal

End_Attack

Begin Wat_List . ——— Diagnostics List

End Wat_ List

End Transaction_Set

e Transaction set language parsed at compile
time using ugly mess of C preprocessor and
compiler.

e Minimal effort put in because there are few
transaction sets, they change rarely, and
parsers are difficult.

U->C : { D }ygs » { WKL }ux » { WKZ }iy
C=>U : { D }ux

Cmd "CC_Data_Translate_Between_Interchange_Keys"
Input ENC (ANY, ANY)
Input ENC (WK, ANY)
Input ENC (WK, ANY)

Output ENC(DEC (WK, TWO) , DEC(DEC(WK,ONE) , ZERO))
End_Cmd

Begin_Cmd_List

// Ability_XOR
Cmd "Ability XOR"
Input ANY
Input ANY
Output XOR (ZERO, ONE)
End_Cmd

// Key_Part_Import
Cmd "Key_Part_Import"
Input ENC (XOR (KM, CV_IMP_PART), ANY) // X, kek_part_token
Input ANY // Y, new XOR value
Output ENC (XOR (KM, CV_IMP) , XOR (DEC (XOR (KM, CV_IMP_PART) , ZERO) ,ONE))
End_Cmd

// Key_Import
Cmd "Key_Import"

Input ENC (XOR (ANY,ANY), ANY) // W, ext_token
Input ENC (XOR (KM, CV_IMP), ANY) // X, kek_token
Input ANY // Y, claimed_type

Output ENC (XOR (KM, TWO) , DEC (XOR (DEC (XOR (KM, CV_IMP) ,ONE) , TWO) , ZERO))
End_Cmd

// Encrypt (NOT Ability_Encrypt)
Cmd "Encrypt"
Input ENC (XOR (KM, CV_DATA) ,ANY)

Input ANY
Output ENC (DEC (XOR (KM, CV_DATA) , ZERO) , ONE)
End_Cmd

End_Cmd_List

Symhoelic Term Manipulation Engine

Terms represented as trees of objects

reduce, rehash, substitute and pattern match
methods

subtree hashes stored to speed up pattern matching

This part 1s most sensitive to bugs — wrong
manipulations will invalidate analyses

Worked hard to remove bugs, but conservative
implementation 1s not optimised for speed

search Threads

Search threads for both forward and backward search

Pseudo-Random Number Generator seeded with strong(ish)
random number representing each path, then called by all
random decision making code owned by that thread

Plausible command and argument selected (optionally
according to likely reduction filters)

Command executed as substitutions followed by a reduction to
normal form

Resulting term checked for match against hash table from
search 1n the other direction

Resulting term added (temporarily) to initial knowledge, and
registered with hash tables

Reverse Execution Logic

enc (tc, X)

chosen calculated
« «
{TC1} .. TC1

dec (tc, X)

{TC1} 1
s {data} TC1

enc (dec(tc,X),Y)

guessed

\

{ TC 1 }) d t /calculated
alta
{data}

/
chosen dec(dec (tC/X)IY)

chosen

calculated
{TC1l} .
e data
{data} ¢
Va Faulty logic!
guessed dec (dec (tc,X),Y)

guessed calculated, and
checked against

4 ec
{TC]-}TC {dat;}g 1 goal
data TCl
/

guessed enC(deC (tC,X) ,Y)

Entropy Limited Term Invention

enc (xor (km, data) , key)

km data (nee o speci

Hash Tables

First implementations small sized (20MB), but current
implementation uses 400MB per machine

Windows 2000 behaves unpredictably when high demands are
made on memory — caused lots of difficulty.

What should the hash table store?

— single bit markers (chosen)
— partial storage of seed

— storage of whole hash

Birthday paradox makes false collisions (i.e. different terms with
the same hash) very likely. Collisions require human
intervention, so hash table must be as big as possible if system is
to stay up unattended for more than a few minutes

Manual logon of 50 machines takes about 15 mins

Client/Server architecture between control
machine and search machines using persistent
TCP/IP connections

Control machine connects to searchers, and
collates diagnostic and result information (main
communications workload), and routes 1t on to the
graphical user interface.

Control machine will later take responsibility for
routing information for distributed hash tables.
Searchers will probably form fully connected
mesh

Watch display for progress towards known
attack (total hits & hit rate)

Hash table growth statistics
Statistics combined across machines
Complexity & search rate reports
Runtime command line interface

(esp. for debug)

Watch Display

Control & Configuration

Attack Complexity | # Commands Time Taken
VSM XOR to null key | 21 5 5 mins
VSM type-cast 238 3 <1 sec
4758 CCA type-cast 257 5 30 secs

Scalahility and Future Limits

* Should be scalable up to about 28Y search path
space
— requires several terabytes for hash table
— equivalent to two 2% searches in each direction
— relies upon continued success with reverse command
execution
e Larger computer cluster could be used — over
1,000 machines 1n entire PWF, only 50 in practical
laboratory

 FPGA hardware technology? Compile transaction
set into hardware search machine?

Security APIs are amenable to analysis for several sorts of attack
The British Museum algorithm is alive and well
Birthday attacks are an extremely useful tool

Many more interesting problems can be brought within range of
current formal analysis techniques by applying engineering
know-how

We need to expend more effort measuring the difficulty of
problems
— Question: Can the complexity bounds of a random search through an API
be narrowed in polynomial time?"
We need to develop instinctive understanding of complexity
consequences as new transaction sets are written, or existing
ones are formalised (complexity theoretic editor?)

http://www.cl.cam.ac.uk/~mkb23/research.html

Academic paper by Feb 20037

