
Model Checking Cryptoprocessors
(or “Why I Like the British Museum”)

Mike Bond

Computer Laboratory

12th November 2002

Contents

• The Problem : Analysing Security APIs
• Protocol Analysis Tools
• The Formalisation Step
• Experiments with SPASS
• The “MIMSEARCH” Tool
• Implementation Tour
• Results & Conclusions

What is a Security API?

Security APIs

• Found at trust boundary of tamper-resistant
processors which use cryptography to control
processing of and access to sensitive data

Host
PC or Mainframe

Security Processor
PCI Card or Separate Module

Security API

VDU

I/O Devs

Network

Why Automate API Analysis?

• APIs are getting more complex – more human
effort required, and few skilled people

- VSM Banking API ’89 – 80 pages
- CCA Banking API ’02 – 458 pages

• Can make finding attacks quicker
• Can spot stupid mistakes at once
• Might one day find an attack of its own accord?
• Can search for all instances of a known attack
• Operating tool can help build intuitive knowledge

Protocol Analysis Tools

SMV FDRSPASS

CSP

Casper

Isabelle PrologSpin

N-PATRL

NRL
Analyser

CAPSL

Inductive
Method

Model CheckersTheorem Provers Search Tools

UPPAAL HyTech

KronosMona

Formalising APIs

1. Read specification (or instruction manual)
2. Decide on primitives required
3. Choose analysis tool supporting primitives
4. Formalise each command
5. Test against known attacks
6. Patch to prevent known attacks
7. Search for unknown attacks

Example Pages from IBM Manual

Command Formalisation

Command ‘CC’ Formalised

Command ‘CC’ Formalised

U->C : { D }WK1 , { WK1 }WK , { WK2 }WK
C->U : { D }WK2

formula(forall([X,Y,Z], implies(
and(public(X),and(public(Y),public(Z))) , public(
enc(enc(i(wk),Z),enc(i(enc(i(wk),Y)),X))))

A = !< ({ X }Y , { Y }WK , { Z }WK) > . ?(x).[x = { X }Y]

B = ?(x) . case x of ({ w }y , { y }WK , { z }WK) in !< { w }z > . 0

Command ‘CC’ Formalised

Cmd "CC_Data_Translate_Between_Interchange_Keys"

Input ENC(ANY,ANY)

Input ENC(WK,ANY)

Input ENC(WK,ANY)

Output ENC(DEC(WK,TWO) , DEC(DEC(WK,ONE) , ZERO))

End_Cmd

What else needs Formalising?

Command Definitions

Initial Knowledge
N/A
Initial Goals
Search Depth
N/A

already…

Protocol Messages

also…

Environment
Attacker’s Abilities
Security Requirements
of Runs of Protocol
of Concurrent Runs

API-SpeakProtocol-Speak

Experiments with SPASS

• SPASS used in its capacity as a first order
logic (FOL) theorem prover

• Predicate ‘public’ used to define commands
and knowledge e.g.

public(input) => public(f(input))

• Try to prove assertion public(a_secret)

• Sit back and wait…

SPASS Output…

---------------------------- SPASS START ------------------------

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

PING PING PING PING PING PING PING PING

(and so on...)

Why SPASS is Unsuitable

• Insufficient runtime feedback
• Insufficient documentation
• Too many (unexplained) parameters to

tweak – over 90 command line options
• SPASS correctly rediscovered every step

and pair of steps of an attack, but could not
discover the attack all in one go

• Unclear how to best re-express the problem

Other Tools?

• Wide choice (15-20 tools)
• Quality of documentation variable; many

concentrate upon the tool’s application to a
particular specialised problem

• Decided to learn from building my
own tool …

“the only way to understand the
wheel is to reinvent it”

Mimsearch Tool : Goals

• Learn about strengths and weaknesses of model
checkers and theorem provers through comparison
with a well understood example

• Improve ability to effectively use existing tools
through better understanding of their internal
working

• Determine the minimum complexity of models
that can capture all known API attacks

• Create a tool powerful enough to reason about
financial APIs, especially those using control
vectors (ie. XOR)

Mimsearch Tool : Non-Goals

• Produce a tool more powerful than tool X
• Produce a better documented tool than tool X
• Produce an implementation for public release

Core Idea : Meet-in-the-Middle

Initial
Knowledge

Initial
Goals

Hash
Table

Hash
Table

Lookup

Lookup

“The British Museum”

“The British Museum”

Core Idea : Exploring the Museum

Core Ideas : Summary

• Attack the state space from both directions
• Minimise the number of heuristics: “Intelligent”

search damages state space, and reduces chance of
finding new attacks

• Accurately measure the state space: more accurate
bounds mean more accurate assessment of security

• Native support for XOR and cryptographic
primitives

• Understand the search : proper diagnostics should
be available to all users

Implementation Tour

• Problem Specification
• Symbolic Term Manipulation Engine
• Search Threads
• Reverse Execution
• Hash Tables
• Distributed Computing Support
• Diagnostics

Problem Specification
Begin_Transaction_Set("4758-testset")

Begin_Cmd_List

End_Cmd_List

Begin_Reverse_Cmd_List

End_Reverse_Cmd_List

Begin_Atom_List

End_Atom_List

Begin_Attack

Begin_Initial_Knowledge_List

End_Initial_Knowledge_List

Begin_Initial_Goal_List

End_Initial_Goal_List

Search_Depth 3

End_Attack

Begin_Wat_List

End_Wat_List

End_Transaction_Set

Definitions of Commands

Definitions of
Command Inverses

List of Atoms

Starting Point

Goal

Diagnostics List

Problem Spec Parser

• Transaction set language parsed at compile
time using ugly mess of C preprocessor and
compiler.

• Minimal effort put in because there are few
transaction sets, they change rarely, and
parsers are difficult.

Command Representation

U->C : { D }WK1 , { WK1 }WK , { WK2 }WK
C->U : { D }WK2

Cmd "CC_Data_Translate_Between_Interchange_Keys"

Input ENC(ANY,ANY)

Input ENC(WK,ANY)

Input ENC(WK,ANY)

Output ENC(DEC(WK,TWO) , DEC(DEC(WK,ONE) , ZERO))

End_Cmd

More Example Commands
Begin_Cmd_List

// Ability_XOR

Cmd "Ability XOR"

Input ANY

Input ANY

Output XOR(ZERO,ONE)

End_Cmd

// Key_Part_Import

Cmd "Key_Part_Import"

Input ENC(XOR(KM,CV_IMP_PART),ANY) // X, kek_part_token

Input ANY // Y, new XOR value

Output ENC(XOR(KM,CV_IMP),XOR(DEC(XOR(KM,CV_IMP_PART),ZERO),ONE))

End_Cmd

// Key_Import

Cmd "Key_Import"

Input ENC(XOR(ANY,ANY),ANY) // W, ext_token

Input ENC(XOR(KM,CV_IMP),ANY) // X, kek_token

Input ANY // Y, claimed_type

Output ENC(XOR(KM,TWO),DEC(XOR(DEC(XOR(KM,CV_IMP),ONE),TWO),ZERO))

End_Cmd

// Encrypt (NOT Ability_Encrypt)

Cmd "Encrypt"

Input ENC(XOR(KM,CV_DATA),ANY)

Input ANY

Output ENC(DEC(XOR(KM,CV_DATA),ZERO),ONE)

End_Cmd

End_Cmd_List

Symbolic Term Manipulation Engine

• Terms represented as trees of objects
• reduce, rehash, substitute and pattern match

methods
• subtree hashes stored to speed up pattern matching
• This part is most sensitive to bugs – wrong

manipulations will invalidate analyses
• Worked hard to remove bugs, but conservative

implementation is not optimised for speed

Search Threads

• Search threads for both forward and backward search
• Pseudo-Random Number Generator seeded with strong(ish)

random number representing each path, then called by all
random decision making code owned by that thread

• Plausible command and argument selected (optionally
according to likely reduction filters)

• Command executed as substitutions followed by a reduction to
normal form

• Resulting term checked for match against hash table from
search in the other direction

• Resulting term added (temporarily) to initial knowledge, and
registered with hash tables

Reverse Execution Logic

O_Enter_Clear_TCTC1

enc(tc,X)

TC1

{TC1}TC

{TC1}TC Reverse_O_Enter_Clear_TC

dec(tc,X)

chosen calculated

Reverse Execution : Dual Inputs

Encrypt
data

enc(dec(tc,X),Y)

Reverse_Encrypt

{TC1}TC
{data}TC1

{data}TC1

{TC1}TC

dec(dec(tc,X),Y)

data

chosen

guessed

calculated

Problems with Reverse Execution

Reverse_Encrypt

Encrypt {data}TC1
{TC1}TC

enc(dec(tc,X),Y)

data

dec(dec(tc,X),Y)

{data}TC1

{TC1}TC data

Faulty logic!

calculated

calculated, and
checked against
original goal

guessed

guessed

chosen

guessed

Entropy Limited Term Invention

enc(xor(km,data),key)

enc

xor

km data

key

2424

210 24

220

burn

24

(need to specify
burn probability at
Different depths)

Hash Tables

• First implementations small sized (20MB), but current
implementation uses 400MB per machine

• Windows 2000 behaves unpredictably when high demands are
made on memory – caused lots of difficulty.

• What should the hash table store?
– single bit markers (chosen)
– partial storage of seed
– storage of whole hash

• Birthday paradox makes false collisions (i.e. different terms with
the same hash) very likely. Collisions require human
intervention, so hash table must be as big as possible if system is
to stay up unattended for more than a few minutes

Distributed Computing Support

• Manual logon of 50 machines takes about 15 mins
• Client/Server architecture between control

machine and search machines using persistent
TCP/IP connections

• Control machine connects to searchers, and
collates diagnostic and result information (main
communications workload), and routes it on to the
graphical user interface.

• Control machine will later take responsibility for
routing information for distributed hash tables.
Searchers will probably form fully connected
mesh

Diagnostics

• Watch display for progress towards known
attack (total hits & hit rate)

• Hash table growth statistics
• Statistics combined across machines
• Complexity & search rate reports
• Runtime command line interface

(esp. for debug)

Watch Display

Statistics

Control & Configuration

Results

30 secs52574758 CCA type-cast

<1 sec3238VSM type-cast

5 mins5266.1VSM XOR to null key

Time Taken# CommandsComplexityAttack

Scalability and Future Limits

• Should be scalable up to about 280 search path
space
– requires several terabytes for hash table
– equivalent to two 240 searches in each direction
– relies upon continued success with reverse command

execution

• Larger computer cluster could be used – over
1,000 machines in entire PWF, only 50 in practical
laboratory

• FPGA hardware technology? Compile transaction
set into hardware search machine?

Conclusions
• Security APIs are amenable to analysis for several sorts of attack
• The British Museum algorithm is alive and well
• Birthday attacks are an extremely useful tool
• Many more interesting problems can be brought within range of

current formal analysis techniques by applying engineering
know-how

• We need to expend more effort measuring the difficulty of
problems
– Question: Can the complexity bounds of a random search through an API

be narrowed in polynomial time?"

• We need to develop instinctive understanding of complexity
consequences as new transaction sets are written, or existing
ones are formalised (complexity theoretic editor?)

More Information

http://www.cl.cam.ac.uk/~mkb23/research.html

Academic paper by Feb 2003?

