
Understanding Security APIs

Michael K. Bond

University of Cambridge

Computer Laboratory

Emmanuel College

Jan 2004

This dissertation is submitted for

the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration except where specifically indicated in the

text.

This dissertation does not exceed the regulation length of 60 000 words, including

tables and footnotes.

2

Dedication

To Philip Barnes, who could have stopped me exercising my talent at breaking

things, but didn’t;

and to Clive Spencer-Bentley, who changed my life both in presence and absence.

3

4

Acknowledgements

I am indebted to a whole host of people who have inspired, conspired, cooperated,

and supported me and this research since it all started back in 2000.

First, I want to thank my supervisor Ross Anderson who started it all, spotted the

significance of the results I was getting, and has backed me up at every twist and

turn of my journey. Many thanks are also due to Larry Paulson who supervised me

for the first year and a half, and lent a balance and perspective to the work which

was invaluable when I was immersed in the technical details of a problem.

I would like to thank my comrades from TG1 – George (“What are we going to do

today George? Same thing do we do every day Mike – try to take over the world!”),

Richard, and Markus: countless conversations, remonstrations, arguments, and even

sword-fights have helped me settle the truths of this topic. In more recent times

Steven, Stephen, Piotr, Andrei and Sergei have all lent their advice, skills and senses

of humour to aid my work.

Out in the big wide world of industry, special thanks go to Nicko Van Someren, Peter

Landrock and Leendert Van Doorn, who have all been very generous to me. Ernie

Cohen gave me some useful pointers and feedback on my crude efforts in formal

analysis. Particular thanks in recent times are also due to Todd Arnold and Dave

Ritten.

I must thank my mysterious and generally invisible funding bodies, the EPSRC

and Marconi – I hope the discoveries in this thesis return at least some of the

investment you have made in me. I should also thank my former director of studies,

Neil Dodgson, for (presumably) not writing a damning reference for me just after

discovering about the ‘vodka in exam’ incident!

In my personal struggle to survive this Ph.D. experience I am lost for superlatives

to describe the unshaking support I’ve had from Marianne and from my family. My

father in particular put up the money until my funding came through, and has read

or heard about (and completely understood) every idea as it arrived hot off the

press. Thanks also to numerous friends who have watched with interest and kept

me sane: Martin, Mary, Matt, Joe, Steve to mention but a few. A special thank

you to Sheila, who I swear is more interested in my work than I am, and who has

been a continual source of support and a great friend.

Finally I must thank Jol – I might have quit academic Security API research had

the size of the research community in this field not suddenly doubled. Onwards to

the future!

5

Understanding Security APIs

Michael K. Bond

Summary

This thesis introduces the newly-born field of Security API research, and lays the

foundations for future analysis, study, and construction of APIs. Security APIs

are application programmer interfaces which use cryptography to enforce a security

policy on the users of the API, governing the way in which they manipulate sensitive

data and key material.

The thesis begins by examining the origins and history of Security APIs, and that

of Hardware Security Modules – tamper-resistant cryptographic processors which

implement the APIs, the study of which goes hand-in-hand with this research. The

major manufacturers and their products are covered, and commentaries draw to-

gether a few of the more important themes that explain why Security APIs are the

way they are today.

The significant original contribution at the heart of the thesis is a catalogue of new

attacks and attack techniques for Security APIs. These attacks have had substan-

tial impact on the Security API design community since their original publication.

For example, the related-key “meet-in-the-middle” attack compromised every HSM

analysed, and differential protocol analysis compromised all financial Security APIs.

Historic attacks and brief explanations of very new unpublished attacks are also

included.

The thesis goes on to provide a body of advice for Security API design, consisting

of heuristics and discussions of key issues, including those most pertinent to modern

HSMs such as authorisation and trusted paths. The advice is linked in with the

cautionary tales of Security API failures from the previous chapters.

As the thesis is opening a new field of academic research, its main objective is to

build understanding about Security APIs, and the conclusions drawn are open-ended

and speculative. The different driving forces shaping the development of Security

APIs are considered, and Trusted Computing is identified as central to the shaping

of Security APIs and to the future relevance of this thesis.

6

Contents

1 Introduction 12

1.1 How to Read this Thesis . 13

1.2 Schedule of Work . 14

2 Origins of Security APIs 17

2.1 Beginnings . 17

2.2 The ‘Killer App’ . 18

2.3 The Present . 19

2.4 Key Dates . 20

3 Origins of Security API Attacks 21

3.1 Early Security API Failures . 21

3.2 A Second Look at the Visa Security Module 22

3.2.1 XOR to Null Key Attack . 23

3.2.2 Type System Attack . 24

3.3 Development of the Attack Toolkit 26

3.3.1 Meet-in-the-Middle Attack . 26

3.3.2 3DES Key Binding Attack . 27

3.3.3 Decimalisation Table Attack 28

3.4 Attacks on Modern APIs . 29

4 Applications of Security APIs 30

4.1 Automated Teller Machine Security 30

4.1.1 Targets of Attack . 31

4.1.2 Threat Model . 32

4.2 Electronic Payment Schemes . 33

7

4.3 Certification Authorities . 34

4.3.1 Public Key Infrastructures . 34

4.3.2 Threat Model . 35

4.4 Prepayment Electricity Meters . 37

4.5 SSL Security and Acceleration . 38

4.6 Digital Rights Management . 38

4.7 Military Applications . 40

4.8 Specialist Applications . 40

5 The Security API Industry 42

5.1 People and Organisations using Security APIs 42

5.2 Corporate Timeline . 45

5.2.1 1970 to 1990 . 45

5.2.2 1990 to 2000 . 46

5.2.3 2000 to Present . 47

5.3 Summary of HSM Manufacturers . 48

5.3.1 IBM . 48

5.3.2 Thales / Zaxus / Racal . 48

5.3.3 nCipher . 49

5.3.4 HP Atalla . 50

5.3.5 Chrysalis-ITS . 50

5.3.6 Prism Payment Technologies 51

5.3.7 Eracom . 51

5.3.8 Baltimore . 52

5.3.9 Jones-Futurex . 52

5.3.10 Other Security API Vendors 52

5.3.11 Odds and Ends . 53

5.4 Interacting with Vendors . 54

5.4.1 Buying from Vendors . 54

5.4.2 Reporting Faults to Vendors 56

8

6 Hardware Security Modules 58

6.1 A Brief History of HSMs . 58

6.2 Physical Tamper-resistance . 61

6.2.1 Tamper-Evidence . 66

6.3 HSM Summary . 68

6.3.1 IBM 4758-001 . 68

6.3.2 IBM 4758-002 . 69

6.3.3 nCipher nForce . 70

6.3.4 nCipher nShield . 71

6.3.5 nCipher netHSM . 72

6.3.6 Prism TSM200 . 73

6.3.7 Thales RG7000 . 74

6.3.8 Atalla NSP10000 . 75

6.3.9 Chrysalis-ITS Luna CA3 . 76

6.3.10 Visa Security Module . 77

7 Analysis of Security APIs 78

7.1 Abstractions of Security APIs . 78

7.1.1 Describing API Commands with Protocol Notation 78

7.1.2 Key Typing Systems . 81

7.1.3 Key Hierarchies . 83

7.1.4 Monotonicity and Security APIs 84

7.2 The Attacker’s Toolkit . 86

7.2.1 Unauthorised Type-casting . 86

7.2.2 The Meet-in-the-Middle Attack 86

7.2.3 Key Conjuring . 87

7.2.4 Related Key Attacks . 88

7.2.5 Poor Key-half Binding . 89

7.2.6 Differential Protocol Analysis 89

7.2.7 Timing Attacks . 91

7.2.8 Check Value Attacks . 92

7.3 An Abundance of Attacks . 93

9

7.3.1 VSM Compatibles – XOR to Null Key Attack 93

7.3.2 VSM Compatibles – A Key Separation Attack 94

7.3.3 VSM Compatibles – Meet-in-the-Middle Attack 95

7.3.4 4758 CCA – Key Import Attack 96

7.3.5 4758 CCA – Import/Export Loop Attack 97

7.3.6 4758 CCA – 3DES Key Binding Attack 98

7.3.7 4758 CCA – Key Part Import Descrack Attack 99

7.3.8 4758 CCA – Weak Key Timing Attack 106

7.3.9 4758 CCA – Check Value Attack 106

7.3.10 VSM Compatibles – Decimalisation Table Attack 107

7.3.11 Prism TSM200 – Master Key Attack 114

7.3.12 Other Attacks . 117

7.4 Formal Analysis of Security APIs . 119

7.4.1 Foundations of Formal Analysis 119

7.4.2 Tools Summary . 121

7.4.3 Case Study: SPASS . 122

7.4.4 MIMsearch . 127

8 Designing Security APIs 133

8.1 Can Security APIs Solve Your Problem? 133

8.2 Design Heuristics . 135

8.2.1 General Heuristics . 135

8.2.2 Access Control . 136

8.2.3 Transaction Design . 138

8.2.4 Type System Design . 139

8.2.5 Legacy Issues . 140

8.3 Access Control and Trusted Paths . 141

8.3.1 How much should we trust the host? 142

8.3.2 Communicating: Key Material 143

8.3.3 Communicating: Authorisation Information 144

8.3.4 Providing Feedback: Display Information 148

8.3.5 Recommendations . 149

10

8.4 Personnel and Social Engineering Issues 150

8.4.1 Dual Security Officer Attack 151

8.4.2 M-of-N Security Officer Attack 152

8.4.3 How Many Security Officers are Best? 154

8.4.4 Recommendations . 154

9 The Future of Security APIs 156

9.1 Designing APIs Right . 156

9.2 Future API Architectures . 157

9.3 Trusted Computing . 159

9.4 The Bottom Line . 160

10 Conclusions 161

10.1 Roles and Responsibilities . 162

10.2 The Security API Designer . 163

10.3 Closing Remark . 163

11 Glossary 164

11

Chapter 1

Introduction

In today’s world, the user of a computer is no longer the only person with a stake

in the operation of her device. Modern PCs, mainframes and networks are not just

designed to support multiple users, but also operate with code, secrets and data

produced by many organisations, each with their own interests. Considering all the

conceptual components, today’s computers belong to no single individual. Each PC

is an autonomous device that tries to enforce many users’ policies on the software

inside it, and many software packages’ policies on the actions of the user.

A Security API is an application programmer interface that uses cryp-

tography to enforce a security policy on the interactions between two

entities . Security APIs have many shapes and forms, but the most common API

is fairly recognisable. One entity – a corporation – will entrust a piece of software

with valuable corporate data, and a policy which carefully controls how users of the

software may access that data. Typically the users are the corporation’s own less

senior employees, but more recently corporations providing services have extended

the use cases to include their clients as well.

In the last three years, the Security API industry has been rocked by the discovery

of a raft of new attacks that work by executing unexpected sequences of commands

to trick the API into revealing secrets in a way that the designers could not possibly

have intended. These attacks have turned the financial PIN processing industry on

its head, and revealed just how much uncertainty there is about the security of the

APIs that are protecting our most valuable key material and secrets.

We are now on the dawn of a new age of control, where individuals and corporations

are putting more and more trust into computers as policy enforcers – they have the

potential to implement multiple sophisticated policies simultaneously. However, the

level of protection of an entity’s interests by a policy is only as good as the policy

itself, and the translation of policies into efficient cryptographic mechanisms is an

undeveloped and poorly understood field.

As Microsoft spearheads the ubiquitous distribution of Security APIs over the home

and corporate community with their NGSCB (formerly Palladium) project, it has

12

become more important than ever for us to develop an understanding of Security

APIs. We need to understand their abilities and limitations, and the secrets of good

design. Only then will we be able to judge whether devolution of policy enforcement

to computers is in the best interests of our society.

The aim of this thesis is to build an understanding of Security APIs at both techni-

cal, operational and social levels. It makes an in-depth examination of the abilities

and weaknesses of today’s Security APIs, drawing strongly from financial security

applications, and the study of tamper-resistant hardware. It exposes the shortcom-

ings of existing APIs, which are failing in some cases to enforce even the simplest of

policies. It examines API failures both in simple two party cases, and complex het-

erogeneous environments. It proposes starting points for methods of analysis, brings

to bear previous innovation from other fields of computer science, and provides the

first tentative advice on good design practice.

If Security APIs do become important and ubiquitous, this thesis should lay the

groundwork for a new and worthwhile field of study.

1.1 How to Read this Thesis

Chapter 2 introduces Security APIs and describe their origins, then chapter 3 de-

scribes the discovery and development of API attacks. Readers who are unfamiliar

with the concept of an API attack should find the simplified explanations of chap-

ter 3 particularly helpful to study before tackling the meat of the thesis in chapter 7.

Note also that there is a glossary at the back of the thesis to help with all the TLAs.

Chapters 4, 5 and 6 introduce the applications and industrial background to Security

APIs in considerable detail. As this thesis is all about understanding Security APIs,

taking time to read about the background is as important as learning about the

attacks, but nevertheless some people may prefer to read more about attacks before

coming back to look at the big picture, and should skip past these chapters straight

to the analysis of Security API failures in chapter 7.

Chapter 7 is the heart of the thesis. Useful abstractions for analysis of Security

APIs are first introduced, followed by a catalogue of attack techniques and actual

instances (fairly heavy going!). Chapter 7 finishes with a discussion of formal meth-

ods for analysis of Security APIs. Chapter 8 then draws together the common themes

behind the failures described in chapter 7 into wisdom and heuristics for good Se-

curity API design. It then goes on to discuss the design issues facing modern APIs,

in particular authorisation and trusted paths.

Finally, chapters 9 and 10 speculate about the future of Security APIs, and draw

some general conclusions about what it will take for API design and research to

mature, and whether or not they will have an important role to play in the future

of computer security.

13

Whatever you intend to get out of this thesis, the author’s intention is for you to

understand Security APIs, so you are strongly encouraged to explore, and see the

field from as many different perspectives as possible.

1.2 Schedule of Work

The material in this thesis is a subset of research performed by the author between

October 2000 and October 2003 in the Security Group at the Computer Laboratory,

University of Cambridge. Much of the material has been published in the following

papers:

• M. Bond,“Attacks on Cryptoprocessor Transaction Sets”, CHES Workshop

2001, Paris, Springer LNCS 2162, pp. 220–234

• M. Bond, R. Anderson, “API-Level Attacks on Embedded Systems”, IEEE

Computer, Oct 2001, Vol 34 No. 10, pp. 67–75

All the attacks except the ’XOR to Null Key Attack’ were discovered by the

author. Anderson co-authored the text.

• R. Clayton, M. Bond, “Experience Using a Low-Cost FPGA Design to Crack

DES Keys”, CHES Workshop 2002, San Francisco, Springer LNCS 2523, pp.

579–592

The attack described in the paper was the author’s work. Clayton built the

majority of the hardware DES cracker that served to accelerate attack, and

co-authored the text.

• R. Anderson, M. Bond, “Protocol Analysis, Composability and Computation”,

Computer Systems: Papers for Roger Needham, Jan 2003

The author discovered the decimalisation table attack described; Anderson was

the primary author of the text.

• M. Bond, P. Zielinski, “Decimalisation Table Attacks for PIN Cracking”, Com-

puter Laboratory Technical Report no. 560, Feb 2003

The author discovered the decimalisation table attack; Zielinski optimised the

attack to be adaptive, and co-authored the text.

14

In addition the work has been presented by invitation at seminars and conferences:

• “Attacks on Cryptoprocessor Transactions Sets”

Computer Laboratory, University of Cambridge, UK

COSIC , Katholieke Universitat Leuven, Belgium

CHES Workshop, Paris, France

• “A Low-cost Hardware Birthday Attack on DES”

Computer Laboratory, University of Cambridge, UK

• “First Steps in Cryptoprocessor API Analysis”

“Specification and Verification of Secure Cryptographic Protocols” Workshop,

Schloss Dagstuhl, Germany

• “The Benefits and Pitfalls of Cryptographic Hardware”

Information Security Forum 2002, London, UK

• “The Hazards of Security API Design”

BCS Advanced Programming Seminar, London, UK

• “Experience Using a Low-Cost FPGA to Crack DES Keys”

CHES Workshop 2002, San Francisco, USA

• “The Hazards of Security API Design : Special Edition”

Security PIC, IBM TJ Watson Research Labs, NY, USA

• “Hardware Security Modules : Benefits and Pitfalls”

EEMA Information Security Solutions Europe conference, France

• “Model Checking Cryptoprocessors : Why I like the British Museum”

Computer Laboratory, University of Cambridge, UK

• “Differential Protocol Analysis and API-Level Attacks”

Invited Talk, Security and Protection of Information 2003

Brno, Czech Republic

• “Security APIs – Digital Battlefields”

Information Security Group, University of Bristol, UK

15

The aspects of the research relating directly to ATM security have been at the centre

of a number of international news stories:

• In November 2001, the attack on the IBM 4758 CCA in section 7.3.7 was

the subject of an exclusive report on BBC Television’s ‘Newsnight’ topical

news programme, and was featured in the Financial Times, Daily Telegraph

and Independent newspapers. Subscribers to Reuters and Associated Press

of America also printed versions of the story. The story was followed up by

topical news programmes on the radio internationally.

• In February 2003, the decimalisation table attack in section 7.3.10 was crucial

evidence in the South African court case “Diners Club SA vs. Singh”, in which

the author gave expert testimony. Diner’s Club International were alleged to

be attempting to stifle disclosure of the attack, and the story ran first in the

Sunday Times, then in the Financial Times and in the Guardian. Various

international radio coverage followed. The technical report “Decimalisation

Table Attacks for PIN Cracking” was downloaded over 120000 times in the

week the story broke.

• In December 2003, the banking security attacks were the subject of a full page

article in the Sunday Business Post, Ireland, followed up by a radio interview

on East Coast FM.

• The research has also featured several times in New Scientist, and in relevant

trade journals and newspapers, and on numerous online news sites.

Finally, the research has already had several tangible effects upon the security of

existing APIs:

• The IBM 4758 CCA attack (section 7.3.7) prompted the release of the CCA

Version 2.41.

• The attack on the Prism TSM200 (section 7.3.11) was reported to Prism and

fixed.

• The theoretical attack on one-shot authorisation using nCipher smartcards

(section 8.4.2) caused a reduction in the timeout period for operator cardset

insertion.

• There is circumstantial evidence that the work published in “Attacks on Cryp-

toprocessor Transaction Sets” prompted a substantial redesign of Atalla’s API,

including the introduction of a new key block format that addressed 3DES

binding issues.

• The attacks have several times been brought (indirectly) before the ANSI

X9.8 financial standards committee and are to a limited extent being taken

into account in the revised versions of the standard.

16

Chapter 2

Origins of Security APIs

There are probably several hundred API designers at work today, and this figure will

grow as Security APIs become ubiquitous. However, their origins were in the hands

of only a few people: small teams of engineers and scientists, first in the US military,

and then in Automated Teller Machine (ATM) security. This brief survey attempts

to show a unifying logic behind the development of Security APIs (of course, history

is not as simple as this, and the individual motivations and perspectives of the

parties involved will not necessarily conform).

2.1 Beginnings

Security APIs were born in an age when dedicated hardware was necessary in order

to do cryptography. The major algorithm of the 70s and 80s – DES – was designed

to be efficient to implement in hardware. The computers of the day needed a simple

command set to govern communication with this hardware: it might consist of a

command to set the key, a command to encrypt, and one to decrypt. Here was the

first cryptographic API, though it could not yet be considered a Security API, as

there was no policy on usage to enforce.

As digital cryptographic equipment became smaller and more portable, the military

adopted in increasing numbers of roles, such as to secure battlefield communications

links. Whilst cipher rooms in embassies abroad would have good physical security,

the dynamic environment of the battlefield could not offer crypto equipment or the

keys within it any long-term safety. Tamper-resistance provided a partial solution

to the problems of battlefield capture.

The principle of tamper-resistance was part of military thinking for some time.

Military analogue and digital equipment was built with custom-marked components

for many years, which made reverse-engineering and re-commissioning of stolen or

damaged equipment harder. Tamper-resistance found further applications in nuclear

command and control. This was an issue of particular concern in the late 1960s;

17

it spawned the development of control equipment to make it difficult for soldiers

working with nuclear ordinance to deploy weapons without proper authorisation.

At the time, the major perceived threat to nuclear ordinance was that of regime

change in allied countries entrusted with the weapons. These controls centred around

Permissive Action Links (PALs): electronics in the ordinance which enforced access

control to the mechanical core of the device.

The conjunction of cryptographic functionality with the security policies inherent

in tamper-resistance and access control gave rise to Security APIs as we know them

today. However, it took the ‘killer app’ of ATM security to introduce Security APIs

to the commercial world.

2.2 The ‘Killer App’

The ATMs which are now a common feature of everyday life have taken several

decades to develop. They started out as cash-dispensing devices purely for increased

speed of service, and are now quite independent multi-purpose devices that provide

banking services in hostile environments. As the international ATM network grew,

the concentration points of the networks – the bank mainframes – held more and

more valuable secrets, and enforcement of policy on usage of their APIs became

crucial.

Some of the early adopters had the security relevant code integrated with application

code inside their mainframes. Thus, the highly sensitive keys used to determine

customer PINs were stored in the RAM of the mainframe, and there would be a

number of employees with sufficient access to see them, if motivated. This risk

was then mitigated by identifying and isolating the security-relevant code from the

rest of the banking applications, yet within the same mainframe. Some of the first

Security APIs were created here – between software modules written by different

programmers.

However, as the overall complexity of operating systems rose, it became clear that

the keys were at risk from the maintenance staff, who needed full access to all parts of

a mainframe to maintain and upgrade the software. Furthermore, it seemed unwise

to put keys that were vital to the economic security of the bank at risk from bugs in

third-party code (not designed with security considerations) that could compromise

the security relevant code. It could also be argued that all mainframe operating sys-

tems were so complex as to make bug-free implementation unattainable, regardless

of whether they had been designed with security in mind.

The concept of a “Hardware Security Module” (HSM) or “Cryptoprocessor” arose

in part to address this problem. These implemented the existing Security APIs, but

with physical separation of the computing platforms, enabling separate administra-

tion of the devices. To be successful, these modules had to fulfil two aims:

18

• To isolate and define the code which was security relevant, and to physically

separate it into a device not under control of the system administrators.

• To minimise the amount of security relevant code, and to keep the rules gov-

erning its use as simple as possible, so that it would be easier to avoid bugs.

In practical terms, financial HSMs were entrusted with the secret keys used for

deriving customer PINs from account numbers. Their policy was to ensure that all

PINs stayed in encrypted form, and clear PINs would never be available to host

programmers (they could only be sent in the clear to a secure printer locked in a

cage). As HSMs began to move away from mainframes into high end servers, and

onto the desks of operators, physical tamper-resistance was added to the logical

Security API. These financial APIs are still in existence today, are used by banks all

over the world, and have not been substantially redesigned since their first inception.

2.3 The Present

The next significant advance was when Security APIs were used to enforce more

complex policies than just protecting secrecy of keys. The introduction of electronic

credit tokens for prepayment services such as electricity meters (and most recently

mobile phones) gave rise to a new application – credit dispensing. A Security API

could have a policy allowing the repeated execution of a credit dispensing command,

deducting an amount from a credit counter each time.

The mid-nineties has seen new applications for Security APIs: securing certification

authorities and internet payment infrastructures. In addition, embedded devices

such as smartcards, which are much smaller and more numerous than hardware

security modules (HSMs), are beginning to add policy enforcement to their APIs.

So security and cryptography are no longer restricted to the military and banking

worlds. Now that corporations and individuals have seized the initiative, wherever

competition arises in life, the tools of the security world can go to work protecting

people’s interests. Security considerations are about to become ubiquitous: every

major operating system ships with substantial crypto facilities, and so do mobile

phones. With the rise of wireless communications, we will see “home area networks”

becoming established, and even washing machines and fridges will use embedded

cryptographic controllers to communicate securely over the airwaves.

–And with every application that uses security comes a ‘Security API’, forming the

interface between the application code and the security relevant code.

19

2.4 Key Dates

Year Events

1960 Development of Permissive Action Links (PALs) started,

to protect nuclear weapons

1973 Bell-LaPadula Multi-Level Security policy proposed

1974 IBM launches 3600 series finance system supporting

the deployment of the first ATMs

1976 DES released by NBS (NBS was predecessor to NIST)

1977 IBM launches first crude HSM: 3845 DES encryption unit

1978 RSA invented

1985 VISA Security Module introduced

1987 IBM introduces 4755 HSM, including µABYSS tamper mesh

1989 IBM introduces Transaction Security System (TSS), which

includes the “Common Cryptographic Architecture” (CCA)

1989 Visa Security Module clones start to appear on market

1991 Eracom enters HSM market, producing “secure application modules”

1992 Longley and Rigby publish first work on automated analysis

of an HSM

1994 Chrysalis-ITS founded

1993 “Why Cryptosystems Fail” published by Anderson

1995 NIST FIPS 140-1 security module validation programme started

1996 nCipher founded

1996 IBM launches 4758 (as replacement for 4755)

1996 RSA launches PKCS#11 standard

1997 Rainbow enters HSM market

1998 Nov IBM 4758 becomes the first HSM validated FIPS 140-1 Level 4

1999 Jan Racal SPS introduces “Websentry” HSM

2000 First academic research into Security APIs

2000 Rainbow launches CryptoSwift HSM

2000 Dec Racal SPS rebranded Thales

2001 Apr nCipher launches SEE (Secure Execution Engine), allowing

custom code to be run on their platform

2001 May “Attacks on Cryptoprocessor Transaction Sets” published

at CHES Workshop in Paris

2001 Nov Clulow discovers information leakage attacks

2002 nCipher goes public; enters financial HSM market

2003 Jan “Decimalisation Table Attack” and information leakage

attacks published by Bond and Clulow

2003 Chrysalis-ITS taken over twice in one year

2003 Thales finally launches successor to RG7000

2003 Oct nCipher launches next generation netHSM

20

Chapter 3

Origins of Security API Attacks

This chapter summarises the history of discovery and publication of API attacks

on HSMs. It explains what an API attack is, how the attacks were discovered, and

shows the core ideas behind them. The attacks described have been built up into

the toolkit described in section 7.2. For simplicity, the story of their discovery is

told only in the context of financial security systems, though the same techniques

have been successfully applied to a range of other non-financial applications.

3.1 Early Security API Failures

Anderson was one of the first to introduce hardware security module failures to

the academic community. After spending a number of years working in financial

security, in 1992 he became involved in a class action law suit in the UK, pertaining

to so-called ‘phantom withdrawals’: unexplained losses of money from customer

accounts. Anderson condensed much of his understanding into an academic paper

“Why Cryptosystems Fail” [3]. This paper focussed on the known failure modes

of ATM banking systems, including several procedural and technical failures in the

use of security modules. A cryptographic binding error was typical of the failures

Anderson described:

“One large UK bank even wrote the encrypted PIN to the card strip. It took the crim-

inal fraternity fifteen years to figure out that you could change the account number

on your own card’s magnetic strip to that of your target, and then use it with your

own PIN to loot his account.”

However, the paper stopped short of including a description of what we would nowa-

days call an API attack. Several years later, Anderson described in “Low Cost At-

tacks on Tamper Resistant Devices” [6], an incident where a dangerous transaction

was deliberately added to a security module API.

Many banks at the time calculated customer PINs by encrypting the customer’s

Primary Account Number (PAN) with a secret key, then converting the resulting

21

ciphertext into a four digit number. If customers wished to change their PIN, the

bank stored an offset representing the difference between the customer’s new and

old PIN in their database. For example, if the customer’s issued PIN was 3566 and

she changed it to 3690, the offset 0134 would be stored.

One bank wished to restructure their customer PANs, maybe to make space for

future expansion. Unfortunately, changing the PAN would change the original PIN

issued to customers, and the bank did not wish to force all its customers to accept

new PINs. The bank commissioned a security module transaction that would adjust

all the stored offsets so that a customer’s account number could change, yet each

could retain the PIN he or she had chosen. The manufacturer produced a transaction

of the following form, warning that it was dangerous and should only be used to

perform a batch conversion, then removed from the API.

Host -> HSM : old_PAN , new_PAN , offset

HSM -> Host : new_offset

Somehow the warnings were forgotten, and the transaction was never removed from

the API. A year or so later, a programmer spotted how this transaction might be

abused. If he fed in his own account number as the new_PAN, the command would

duly calculate and return the difference between any customer’s issued PIN and his

own original PIN! In the published paper, Anderson characterised this as a protocol

failure.

In 2000 Anderson gave a talk at the Cambridge Security Protocols workshop, titled

“The Correctness of Crypto Transaction Sets” [1]. He re-iterated a description of

the above failure, which pertained to a single bad transaction, but this time he asked

the question: “So how can you be sure that there isn’t some chain of 17 transactions

which will leak a clear key?”.

The idea of an API attack was born as an unexpected sequence of transactions

which would trick a security module into revealing a secret in a way the

designers couldn’t possibly have intended. Shortly afterwards Anderson took

a second look at the API of the ‘VISA Security Module’ and came up with an attack.

3.2 A Second Look at the Visa Security Module

The ‘VISA Security Module’ (VSM) was one of the earliest financial HSM designs,

which VISA commissioned to improve PIN processing security, so that member

banks might be encouraged to permit processing of each other’s customer PINs.

It was a large metal box that talked to a bank mainframe via an RS232 or IBM

channel interface. No pictures of the VSM are currently in the public domain, but

the RG7000 pictured in figure 3.1 is very similar.

22

Figure 3.1: The RG7000 Hardware Security Module

3.2.1 XOR to Null Key Attack

Until recently ATMs had to support offline operation, so when banks set up new

ATMs, they needed a way to securely transfer the PIN derivation keys used to

calculate customer PINs from PANs. The VSM used a system of dual control to

achieve this. The idea was that two service engineers would each take one component

of a master key to the ATM, and enter it in. Once both components were entered,

the ATM could combine the components using the XOR function. The resulting

‘Terminal Master Key’ (TMK) would be shared with the VSM and could be used

for communicating all the other keys. A transaction was first run twice at the VSM

to generate the components:

HSM -> Printer : TMK1 (Generate Component)

HSM -> Host : { TMK1 }Km

HSM -> Printer : TMK2 (Generate Component)

HSM -> Host : { TMK2 }Km

The VSM only had very limited internal storage, yet there might be many different

ATMs it needed to hold keys for. The paradigm of working with encrypted keys

evolved: instead of keeping keys internally, the VSM only held a few master keys,

and other keys were passed in as arguments to each transaction encrypted under one

of these master keys. So, in response to the above transaction, the VSM returned an

encrypted copy of the component to the host computer, encrypted under its master

key, Km (and of course printed a clear copy onto a special sealed mailer for the

23

service engineer). In order for the VSM to recreate the same key as the ATM, it had

a command to XOR two encrypted components together, as shown in figure 3.2.

Host -> HSM : { TMK1 }Km , { TMK2 }Km (Combine Components)

HSM -> Host : { TMK1 ⊕ TMK2 }Km

The attack

Host -> HSM : { TMK1 }Km , { TMK1 }Km (Combine Components)

HSM -> Host : { TMK1 ⊕ TMK1 }Km

TMK1 ⊕ TMK 1 = 0

Figure 3.2: The XOR to Null Key Attack

Anderson made the following observation: if the same component is fed in twice,

then because the components are combined with XOR, a key of binary zeroes will

result. This known key could then be used to export the PIN derivation key in

the clear. Anderson described a slightly more complex completion of the attack

in [1] than was strictly necessary, but the core idea was the same. This attack was

the first true Security API attack, as (unlike the offset calculation attack) it was

unintentional, and was composed of more than one transaction. In this thesis, it is

named the “XOR to Null Key Attack”, and is described fully in section 7.3.1.

3.2.2 Type System Attack

In late 2000, working with Anderson, the author examined the transaction set and

found that there were more vulnerabilities: the VSM also had problems with keeping

keys used for different purposes separate. The Terminal Master Keys used to send

other keys to ATMs, and the PIN Derivation Keys used to calculate customer PINs

were stored by the VSM encrypted with the same master key – Km. Two example

transactions using these keys are shown below. PDK1 is a PIN derivation key, and

TMK1 is a terminal master key.

The first transaction encrypts a customer PAN with the PIN derivation key, but

sends the PIN to a secure printer (for subsequent mailing to the customer); the

second transaction encrypts the PIN derivation key under a TMK belonging to an

ATM. Though they perform quite different functions which are not connected, their

inputs were sent in under the same master key.

Host -> HSM : PAN , { PDK1 }Km (Print PIN Mailer)

HSM -> Printer : { PAN }PDK1

Host -> HSM : { PDK1 }Km , { TMK1 }Km (Send PDK to ATM)

HSM -> Host : { PDK1 }TMK1

24

However, the designers did recognise a clear difference between ‘Terminal Commu-

nications’ keys (TCs) and PIN derivation keys or TMKs. TC1 is a terminal commu-

nications key, and Km2 is a second master key that was used to encrypt keys of this

type, keeping them separate from the rest. They were kept separate because termi-

nal communications keys were not considered to be as valuable as PIN derivation

keys – and there needed to be a transaction to enter a chosen TC key.

Host -> HSM : TC1 (Enter clear TC Key)

HSM -> Host : { TC1 }Km2

TCs needed to be communicated to ATMs in the same way as PIN derivation keys,

so there was a command that worked in a very similar way, encrypting the chosen

TC under a chosen TMK corresponding to a particular ATM.

Host -> HSM : { TC1 }Km2 , { TMK1 }Km (Send TC Key to ATM)

HSM -> Host : { TC1 }TMK1

However, the author spotted that when these two transactions were used together,

given the lack of differentiation between PIN derivation keys and TMKs, there was

a simple attack. It was to enter in a customer PAN, claiming it to be a TC key, and

substitute a PIN derivation key for a TMK in the “send to ATM” transaction.

The Attack

Host -> HSM : PAN (Enter clear TC Key)

HSM -> Host : { PAN }Km2

Host -> HSM : { PAN }Km2 , { PDK1 }Km (Send TC Key to ATM)

HSM -> Host : { PAN }PDK1

Of course, { PAN }PDK1 is simply the customer’s PIN. The full details of this attack

are in section 7.3.2. Just like Anderson’s ‘XOR to Null Key Attack’, this vulnera-

bility had gone unnoticed for over a decade. How many more attacks were waiting

to be found?

25

3.3 Development of the Attack Toolkit

3.3.1 Meet-in-the-Middle Attack

The author began a systematic exploration of the VSM API, and also examined the

financial API for IBM’s 4758 HSM, called the Common Cryptographic Architecture

(CCA). The CCA manual was available on the web [26], and when the author studied

it, a number of new attack techniques rapidly emerged.

The author observed that both the CCA and the VSM had transactions to generate

‘check values’ for keys – a number calculated by encrypting a fixed string under the

key. When keys were exchanged between financial institutions in components, these

check values were used to ensure that no typing mistakes had been made during key

entry. The input to the check value encryption was usually a block of binary zeroes.

Host -> HSM : { TMK1 }Km (Generate Check Value)

HSM -> Host : { 0000000000000000 }TMK1

Another intriguing feature was that both HSMs stored their keys on the host com-

puter, and only held master keys internally. Due to this external storage, a user

could generate an almost unlimited number of conventional keys of a particular

type. It was well known that the check values could be used as known plaintext for

a brute force search to find a key, but a full search of the 56-bit DES key space was

considered prohibitively expensive. But what if the attacker did not need to search

for a particular key, but if any one of a large set would suffice? The attack went as

follows:

1. Generate a large number of terminal master keys, and collect the check value

of each.

2. Store all the check values in a hash table

3. Perform a brute force search, by guessing a key and encrypting the fixed test

pattern with it

4. Compare the resulting check value against all the stored check values by look-

ing it up in the hash table (an O(1) operation).

With a 256 keyspace, and 216 target keys, a target key should be hit by luck with

roughly 256/216 = 240 effort. The author named the attack the ‘meet-in-the-middle’

attack with reference to how the effort spent by the HSM generating keys and the

effort spent by the brute force search checking keys meet-in-the-middle1. The time-

memory trade-off has of course been described several decades ago, for example

1The “meet-in-the-middle” terminology is not to be confused with cryptographic meet-in-the-

middle attacks on block ciphers. More appropriate terminology from published literature includes

‘key collision’ and ‘parallel key search’.

26

in the attack against 2DES proposed by Diffie and Hellman [19], neither is the

idea of parallel search for multiple keys new (Desmedt describes parallel key search

machine in [18]). However, it seems the author was the first to apply the technique

to HSMs. It was extremely successful, and compromised almost every HSM analysed

– sections 7.2.2, 7.3.3 and 7.3.7 have more details.

3.3.2 3DES Key Binding Attack

In the nineties, financial API manufacturers began to upgrade their APIs to use

triple-DES (3DES) as advancing computing power undermined the security of single

DES. IBM’s CCA supported two-key 3DES keys, but stored each half separately,

encrypted under the master key in ECB mode. A different variant of the master key

was used for the left and right halves – achieved by XORing constants representing

the types left and right with the master key Km.

Host -> HSM : { KL }Km⊕left , { KR }Km⊕right , data (Encrypt)

HSM -> Host : { data }KL|KR

The CCA also had support for single DES in a special legacy mode: a ‘replicate’

3DES key could be generated, with both halves the same. 3DES is encryption with

K1, followed by decryption with K2, then encryption with K1, so if K1 = K2 then

E(K1, D(K1, E(K1, data))) = E(K1, data), and a replicate key performs exactly

as a single DES key.

Host -> HSM : (Generate Replicate)

HSM -> Host : { X }Km⊕left , { X }Km⊕right

The flaw was that the two halves of 3DES keys were not bound together with each

other properly, only separated into left and right. There was a clear CRC of the

key token, but this was easily circumvented. A large set of replicate keys could be

generated and cracked using the meet-in-the-middle attack, then a known 3DES key

could be made by swapping the halves of two replicate keys. This known key could

then be used to export other more valuable keys.

Host -> HSM : (Generate Replicate)

HSM -> Host : { X }Km⊕left , { X }Km⊕right

Host -> HSM : (Generate Replicate)

HSM -> Host : { Y }Km⊕left , { Y }Km⊕right

Known key : { X }Km⊕left , { Y }Km⊕right

27

This key binding attack effectively reduced the CCA’s 3DES down to only twice

as good as single DES, which was by then widely considered insufficient. Several

attacks exploiting the key binding flaw are described in sections 7.3.6 and 7.3.7.

The attack techniques and implementations in the last few sections were published

at the “Cryptographic Hardware and Embedded Systems” workshop in Paris in

2001 [8], and later in IEEE Computer [9]. The CHES paper inspired Clulow to

examine the PIN verification functionality of financial APIs more closely, and he

discovered half a dozen significant new attacks, which he detailed in his MSc thesis

“The Design and Analysis of Cryptographic APIs for Security Devices” [15].

3.3.3 Decimalisation Table Attack

In late 2002 the author and Clulow independently made the next significant ad-

vance in attack technology – the discovery of information leakage attacks. Clulow

had discovered the problems an entire year earlier, but was unable to speak pub-

licly about them until late 2002, when he gave seminars at RSA Europe, and the

University of Cambridge. Early in the next year the author published details of the

‘decimalisation table attack’, and Clulow published his M.Sc. thesis.

The decimalisation table attack (explained fully in section 7.3.10) exploited flexibil-

ity in IBM’s method for calculating customer PINs from PANs. Once the PAN was

encrypted with a PIN derivation key, it still remained to convert the 64-bit binary

block into a four digit PIN. A natural representation of the block to the programmers

was hexadecimal, but this would have been confusing for customers, so IBM chose

take the hexadecimal output, truncate it to the first four digits, then decimalise

these using a lookup table, or ‘decimalisation table’, as shown in figure 3.3.

Account Number 4556 2385 7753 2239

Encrypted Accno 3F7C 2201 00CA 8AB3

Shortened Enc Accno 3F7C

0123456789ABCDEF

0123456789012345

Decimalised PIN 3572

Figure 3.3: IBM 3624-Offset PIN Generation Method

Originally the decimalisation table was a fixed input – integrated into the PIN

generation and verification commands, but somehow it became parameterised, and

by the time the VSM and CCA APIs were implemented, the decimalisation table was

28

an input that could be specified by the user. If a normal PIN verification command

failed, it discounted a single possibility – the incorrect guess at the PIN. However,

if the decimalisation table was modified, much more information could be learnt.

For example, if the user entered a trial PIN of 0000, and a decimalisation table

of all zeroes, with a single 1 in the 7 position – 0000000100000000 – then if the

verification succeeded the user could deduce that the PIN did not contain the digit

7. Zielinski optimised the author’s original algorithm, revealing that PINs could be

determined with an average of 15 guesses [10].

3.4 Attacks on Modern APIs

Many of today’s Security APIs have been discovered to be vulnerable to the same

or similar techniques as those described in this chapter. However, there are some

more modern API designs which bear less resemblance to those used in financial

security applications. In particular, the main issues relating to the security of PKI

hardware security modules are authorisation and trusted path. These issues have

only very recently been explored, and there have been no concrete attacks published.

Chapter 8 includes a discussion of the issues of authorisation and trusted path, and

describes several hypothetical attacks.

Finally, if the reader is already thoroughly familiar with the attacks described in

this chapter, attention should be drawn to several brand new Security API attacks

which have been outlined in section 7.3.12, which were developed by the author as

a result of analysis of nCipher’s payShield API.

29

Chapter 4

Applications of Security APIs

This chapter gives an overview of the people and organisations that work with

Security APIs, and discusses their current applications. Some observations are made

on the interactions between the different parties in the industry, and upon when

Security APIs should and should not be used.

4.1 Automated Teller Machine Security

ATMs were the ‘killer application’ that got cryptography into wide use outside of

military and diplomatic circles. Cryptography was first used following card forgery

attacks on early machines in the late 1960s and early 1970s, when IBM developed a

system whereby the customer’s personal identification number (PIN) was computed

from their account number using a secret DES key, the PIN derivation key. This

system was introduced in 1977 with the launch of the 3614 ATM series [25] and is

described further in [2, 3]. Along with electronic payments processing, it is one of

the highest volume uses of tamper-resistant hardware.

HSMs are today used to control access to the PIN derivation keys, and also to keep

PINs secret in transit through the network:

• Acquisition of PINs inside the ATMs is handled by special HSMs integrated

into the keypads, normally built around a secure microcontroller such as a

Dallas DS5002.

• Verification requests and responses are then transferred from the ATM across

a network of ‘switches’, each having a conventional HSM (such as an RG7000)

translating between encryption and MAC keys on incoming and outgoing links.

• PIN verification requests are finally resolved by an HSM at the issuing bank.

• There may also be HSMs at card embossing and mass PIN mailing sites which

banks occasionally contract out to help with high volume reissue of cards.

30

Because the ATM network is link based architecture, rather than end-to-end, the

increasing user-base increases the encryption workload several fold.

4.1.1 Targets of Attack

The ATM system security in banks has a quite conventional threat model which

shares aspects with that of many other data-processing and service-providing cor-

porations, because there are no secrets which are absolutely mission-critical. Whilst

the keys used for deriving PINs from account numbers are extremely valuable, even

a theft of tens of millions of pounds is not enough to collapse a bank for financial

reasons (their brand name, however, can certainly be considered mission-critical).

The crucial secret is the customer PIN. Sometimes PIN information exists as explicit

data which must be kept secret from an attacker, and sometimes it is kept as a PIN

derivation key. The authorisation responses sent to ATMs, although not secret, are

also valuable. If the integrity of these responses can be compromised, and a no

turned to a yes, money can be withdrawn from a particular cash machine, without

knowledge of the correct PIN. Service codes for disabling ATM tamper-resistance,

or for test dispensing of cash are also of course valuable and must be kept secret.

It is actually quite easy to quantify the financial loss associated with PIN theft.

‘Velocity checking’ limits mean that maybe a maximum of £300 can be withdrawn

per calendar day, and if monthly statements to the customer are checked, then the

fraud can perpetuate for at most one month. Thus each stolen PIN is worth up

to £9300 to the attacker – maybe on average £5000. There have been cases where

velocity checking was bypassed, or not even present [20]; in these circumstances, as

a rough guide, one person can withdraw about £25000 per day working full time.

Unfortunately for the bank, because their prime business of storing money for people

is strongly built upon trust, the effects of fraud on the bank’s image and the trust

of its customer base have to be factored in. These are very difficult for an outsider

to assess, let alone consider quantitatively.

If handled shrewdly, the loss may not be costly at all, for instance if the bank

declares the customer to be liable. If the amount is small enough, the customer

will be tempted to give up rather than wasting time and effort to retrieve a small

sum. However, the potential loss of revenue from bad handling of a fraud worth,

say £10000, could be in the tens of millions in terms of long-term business lost.

The primary motive for attacking a bank is obviously financial gain. Some attackers

seek short-term financial gain, for instance by extracting PINs for several hundred

accounts and looting them in a couple of weeks. Others may plan for mid-term

financial gain, for instance by selling a PIN extraction service for stolen cards at

£50 per card; this slow trickle of cash may be easier for the attacker to conceal in

his finances.

31

Higher-level goals maybe to achieve financial gain with the explicit desire that the

bank knows it is being robbed: extortion or blackmail. On the other hand, the goal

might not include financial gain, as with revenge, or attacker may simply desire to

create anarchy.

4.1.2 Threat Model

The primary threats to the above targets of attack are as follows:

• PIN observation. Secretly observing someone enter their PIN, or ‘shoulder-

surfing’ as it has been dubbed, is an easy way to discover a small number of

PINs. It is unlikely PIN observation attacks will ever be completely eradicated.

• PIN guessing. PINs are weak secrets, so there is always the possibility that

they can be guessed outright. Guessing can be made easier by exploiting weak-

nesses in the algorithms used to determine PINs, offsets on the magstripe [31],

or information in the wallet of the victim (in the case of a stolen card).

• HSM assisted PIN guessing. Bank insiders may have the opportunity to exploit

direct access to the HSM verifying PINs. Normally this does not present a

large window for abuse, requiring thousands of transactions per PIN, plus

a visit to an ATM machine up-front. However, new techniques such as the

decimalisation table attack (see section 7.3.10) make this a much more realistic

type of attack.

• HSM key material compromise. Compromise of key material in an HSM,

through API attacks or through collusion can reveal the keys for calculating

customer PINs, or keys under which correct encrypted PINs are stored. This

type of attack is only available to a programmer with sufficient access.

• HSM encrypted PIN block compromise. Encrypted PIN blocks travel all around

ATM networks, holding trial PINs from valid customers at ATMs and correct

PINs on their way to PIN mailer printing sites. These blocks can be decoded

through key material compromise higher up the hierarchy, or can be com-

promised themselves with new information leakage attacks and differential

protocol analysis (see section 7.2.6).

• Authorisation response forging. Once a PIN is verified by an HSM, it is the

responsibility of the host computer to pass back an authorisation response to

the ATM, which will then dispense the cash. These responses are supposed to

have their integrity assured by MACs on the messages on each link, but the

messages are still vulnerable to modification within the hosts, during MAC

translation, and sometimes on the links themselves, when network operators

simply don’t bother to enable the MACs on the messages.

32

• Procedural control bypass. Procedural controls can be subtly modified to allow

key material change or discovery by one or a few of the authorised parties

in collusion. They can only be completely bypassed by targeting weak links

further up the chain. For instance, older banking HSMs use key switches

for authorisation. If there is a reissue procedure for lost keys, a requisition

form could be forged by the attacker, completely bypassing the rest of the

procedures protecting the bank’s legitimate copy.

• Key material discovery. Occasionally gross misunderstandings of the secrecy

requirements on key components are made. There are reports of key compo-

nents being stored in public correspondence files [3], instead of being destroyed

after use. An attacker could exploit a failure such as this to discover a trans-

port key, and unpick the rest of the system from there.

• Brute force cryptographic attacks. Older bank systems still using DES are

nowadays vulnerable to brute force key material guessing attacks. Insiders

with HSM access may be able to use techniques such as a meet-in-the-middle

attack (see section 7.2.2) to bring the key search within range of a desktop

PC. Outsiders may need to invest roughly £10000 to build equipment that

can crack DES keys in a reasonable time period.

• Falsely disputed transactions. Every bank customer has a simple strategy

available to defraud the bank – make some ATM withdrawals outside their

normal pattern of usage, and claim they are phantoms. This strategy relies

upon the legal precedent making customer reimbursement likely.

• HSM vulnerability disclosure. Discovering and disclosing vulnerabilities with-

out ever being in a clear position to exploit them can support goals of extortion

and blackmail.

4.2 Electronic Payment Schemes

The existing electronic payment schemes based on magstripe cards have used HSMs

for some time to protect communications links between banks, and to hold keys

which are used to verify the genuineness of a card presented to a Point of Sale

(POS) machine (using the CVV values). These contain secure microcontrollers such

as the Dallas DS5002. In large supermarkets and chain stores, HSMs may also

be used as concentrators for networks of tills handling card and PIN information.

HSMs are also an integral part of the back-end systems at banks which process these

transactions, preventing operations centre employees from exploiting their positions.

The EMV standard is currently being rolled out, which aims to replace current

magstripe technology with PIN on chip smartcards. The EMV standard is named

after the three member organisations that created it: Europay, Mastercard and

33

VISA. It also permits end-to-end communication between the smartcard and the

HSM at the issuing bank.

The next generation of electronic payment schemes are well on the way. Although

home banking is already deployed, for it to become ubiquitous designers need to

find better ways to establish an island of trust in part of the home user’s PC –

some are waiting for the general promises of “trusted computing” to materialise,

and others are developing smartcards and reader solutions, or special disconnected

tamper-resistant authorisation devices (similar to the RSA SecurID) to provide a

Security API which they hope will be resistant to attack by malicious code running

on the home user’s PC.

Other electronic payment schemes are of the digital cash genre. Various of them

rely upon trusted third parties to mint electronic tokens, and these third parties can

make use of Security APIs to control the production and distribution processes of

electronic cash.

4.3 Certification Authorities

Certification Authorities and Public Key Infrastructures (PKIs) were the crucial

application that prompted development of the current generation of HSMs. HSMs

are now found underlying corporate IT services, certification authorities and virtual

private networks. In this new application area, establishing the threats to security is

more difficult than for older applications such as ATM security and credit dispensing.

The typical goals of an attacker such as personal profit remain largely unchanged,

but the path to achieving this goal is more complex, and will be dependent upon

the semantics of the certificates processed, and the PKI to which they belong. In

particular, there may be no secret information obtainable or bogus information

insertable that could be directly exchanged for money.

The HSMs used at Certification Authorities have developed some way on from simple

acceleration units that sped up the modular math operations. They are now key

management devices and their function is access control: to protect and control

the use of the private keys in PKIs. Through the use of procedural controls HSMs

can help enforce more sophisticated and stringent policies on the circumstances of

key usage. They can enforce dual control policies on the most valuable keys in a

CA, can help supervisors monitor the activities of large numbers of human operators

efficiently, and keep signed audit trails of activities to allow retrospective monitoring

of access control.

4.3.1 Public Key Infrastructures

Certification authorities are all about enabling identification and communication

with people, and are closely tied into public key infrastructures that contain the

34

certificates they produce. It is easy for an HSM to provide protection for the CA’s

signing keys in the face of simple threats such as theft of computer equipment or

hacking of the corporate network, but they also have potential to process policy com-

ponents and genuinely assist in the operation of a Certification Authority – but to

do this the HSM’s Security API policy must take into account the threats, which are

linked to the purpose and value of the certificates which the CA produces. Studying

the underlying PKI that the certificates belong to can help build an understanding

of the threat.

PKIs are dynamic collections of keys and certificates (documents signed by keys)

which reflect a management structure or usage policy. PKIs are used to add structure

and preserve the integrity of systems with large numbers of principals, where the

structure is constantly changing. Examples include

• Logon authentication for large companies, maybe with 10000 or more employ-

ees and offices in different countries with different IT staff running computer

systems in each country.

• Delegating and managing code signing ability to ensure that programmers

contributing to a large website such as www.microsoft.com can only upload

bona fide code.

• Transaction authorisation – establishing digital identities for people, and en-

forcing signature policies to validate transactions (e.g. a stock trade must be

authorised by one trader and one manager).

Typical tasks performed in a certification authority are registration & certification,

certificate renewal, and certificate revocation.

4.3.2 Threat Model

Most of the sensitive information within a PKI has no intrinsic value: certificates

and keys are means to an end, worthless when divorced from their context. The one

exception is the root key for an API, which could be considered to have intrinsic

value developed by expending effort securely distributing it to millions of end-users.

A corporate brand name is a good analogue for a PKI root key – it can be absolutely

mission-critical. Adequate protection for the PKI root key is vital.

Lower down the hierarchy of keys and certificates, there may be no intrinsic value

to key material, but revocation and reissue could still be expensive. It may be

permissible to detect abuse rather than absolutely prevent it. The cost of extra

protection must be weighed up against perceived threat, and cost of key material

reissue. Late detection strategies are also favourable when the security is only to

achieve “due diligence” – buying products which satisfy accreditation procedures

and insurance requirements in order to shift liability.

35

There are three sorts of threat to key material in a PKI:

• Theft of key material. If intrinsically valuable key material is stolen, the at-

tacker could put it to any possible use. This is the toughest attack to achieve,

almost certainly requiring collusion or deceit, but would enable any of the

goals above, and leave little evidence of the theft afterwards.

• Admission of bogus key material. Admission of bogus key material (i.e. key

material which is known or chosen by the attacker) can achieve the same goals

as theft of existing key material, but the attack is likely to take much longer,

as newly admitted key material would have to slowly grow from having no

intrinsic value. Admitting bogus key material might immediately enable theft

of confidential data, but forged certificate sales and extortion would be harder.

Residual evidence of attack is of course inherent in admitting bogus material,

but auditing to spot bogus material is non-trivial.

• Abuse of key material. Finding ways to gain unauthorised access to existing

key material could permit sale of forged certificates, and theft of confidential

information, but blackmail would be very difficult. Access has to be main-

tained to the security processor for the abuse to continue. The attacker is

thus at a significant disadvantage and risk. But if there is very valuable key

that can be abused, a one-off event may still be worthwhile. Key abuse attacks

will have an active component, and maybe involve deceit.

In summary, a Security API in a certification authority should carefully protect the

root key, try to limit reliance on audit to spot abuse of mid-value key material, and in

particular, resist the threat of systematic abuse of access control. Facilitating these

goals is at least as important as preserving the secrecy of private keys themselves.

A range of types of employees will be in a position to attempt one of the above sorts

of attack:

• Senior manager (controls employees and policy)

Senior management are of course in a strong position. A senior manager can

influence policy, and as is demonstrated later, only subtle changes are nec-

essary to break procedural controls. He would only come under fire if his

changes break fundamental and established practices or codes of conduct for

that industry. Uninterrupted access to the HSM, and other resources including

modules for experimentation would be within reach. However, experimenting

with the API would be out of the question during office hours. Attacks in-

volving collusion are likely to be between senior management and a lower level

employee who has everyday access to the module.

36

• Single security officer (in an m-of-n scheme)

As a team, the security officers are all-powerful. A single security officer is

already part way to exercising this total power, which would straight away

yield an attack. He or she is in a good position to deceive the other security

officers, and is likely to be trained and experienced in operation of the module.

However, he is under scrutiny from all levels – management, colleagues and

users – as they are aware that deviation from established procedures gives

him full privilege. He will have good host access, but is unlikely to be able to

operate the host every day.

• Single operator (in an m-of-n scheme)

Like the security officer, an operator holding an access card is already part

way authorised to perform sensitive actions. He or she is in a good position to

deceive other operators, and it is likely that the training and skill of the other

operators will be lower than that of a security officer. A card-holding operator

would regularly have access to the host in the normal line of business.

• Operator (access to host, no cards)

An operator who does not have rights over any of the access tokens still has

scope to perform attacks. He is in a good position to subvert the host or

harvest passwords and PINs from other operators. As a colleague he would

be in a position to deceive card-holding operators, or possibly even security

officers.

4.4 Prepayment Electricity Meters

HSMs are an important and integral part of the prepayment electricity meter systems

used to sell electric power to students in halls of residence, to the third-world poor,

and to poor customers in rich countries [5]. They are typical of the many systems

that once used coin-operated vending, but have now switched to tokens such as

magnetic cards or smartcards. The principle of operation is simple: the meter

will supply a certain quantity of energy on receipt of an encrypted instruction –

a ‘credit token’, then interrupt the supply. These credit tokens are created in a

token vending machine, which contains an HSM that knows the secret key in each

local meter. The HSM is designed to limit the loss if a vending machine is stolen or

misused; this enables the supplier to entrust vending machines to marginal economic

players ranging from student unions to third-world village stores.

The HSM inside the vending machine thus needs to be tamper-resistant, and protect

the meter keys and a value counter. The value counter enforces a credit limit; after

that much electricity has been sold, the machine stops working until it is reloaded.

This requires an encrypted message from a controller one step up higher the chain of

37

control – and would typically be issued by the distributor once they have been paid

by the machine operator. If an attempt is made to tamper with the value counter,

then the cryptographic keys should be erased so that it will no longer function at

all. Without these controls, fraud would be much easier, and the theft of a vending

machine might compel the distributor to re-key all the meters within its vend area.

There are other security processors all the way up the value chain, and the one at

the top – in the headquarters of the power company – may be controlling payments

of billions of dollars a year.

4.5 SSL Security and Acceleration

Secure Sockets Layer (SSL) is an widespread protocol used in conjunction with

HTTP to secure communications on the web. It supports sensitive web services

such as secure payments and electronic banking. Public keys embedded in internet

browsers are used to authenticate a chain of certificates that attest to a relationship

between a particular domain name and a public key used in the SSL protocol. The

user relies on this certificate chain to be sure that she is communicating directly with

the webserver of the site in question – a merchant or electronic banking service, for

example.

A webserver supporting SSL commonly performs a private key exponentiation for

every connection attempted, so it has a considerable strain placed upon its proces-

sors by the modular arithmetic. This need to accelerate the public key operations

spawned the application field of SSL accelerators. The companies providing the

products also realised that the potential risks to a business of compromise of their

SSL private key were considerable (undermining the trust of their customer base is

very serious, even if the private key is not used for large scale spoofing or eavesdrop-

ping). A second function thus arose of the cryptographic coprocessor – to protect

the private keys from theft, should the webserver be compromised. This defence is in

some senses just security through obscurity – most people who hack webservers will

probably not know how to hack SSL accelerators, but it is reasonable to believe that

designers of dedicated crypto acceleration equipment will be better at getting the

protection right than authors of webserver and O/S software, for whom the crypto

is not a speciality.

4.6 Digital Rights Management

Digital Rights Management is the control of distribution and use of copyrighted

works. Since the introduction of digital media, lossless copying has become possible,

and publishers are seeking to protect their revenue streams. DRM can also be used

for controlling access to media to enable alternative marketing strategies, such as a

subscription service for access to media.

38

The most widely deployed DRM mechanisms are currently in consumer electron-

ics. For example, Sony Memory Sticks – Flash based digital storage media – have

‘protection bits’, that mark certain files with ‘do not copy’, or ‘only retrievable by

authorised Sony devices’ tags. DVDs also have DRM mechanisms for ‘region con-

trol’, a finer market segmentation method which allows geographically staggered

release dates, and makes trafficking illegal bitwise copies slightly harder. None of

this technology is highly tamper-resistant, though modern miniaturised circuitry

does discourage straightforward physical attack.

There are more DRM mechanisms that begin to look like Security APIs. They

are usually software based, and just like their hardware counterparts they rely upon

obscurity and obfuscation. Third party copy-protecting encapsulation has been used

for distribution of electronic books, and similar techniques have been tried for audio

and video media. A common paradigm is to have support software entrench itself

in the operating system, storing protected media in encrypted form, and hiding

the keys. This O/S add-on then presents a Security API to some graphical user

interface which the end-user will use to manage his or her media collection. These

third-party packages are often general-purpose, so have properties much like general-

purpose crypto APIs. They will support binding of media to a particular PC or

system configuration, expiring licences, and process feature codes which change the

access control policies, or unlock further content. Additional features and repeat

subscriptions can thus be sold to users without the need for further downloads of

large binaries.

Examples of these packages include:

• Folio Rights Publisher [46]

• Microsoft Rights Management System [47]

• Infraworks Intether Suite [48]

Some manufacturers have produced generic rights management components that

add into Windows and control not just media for entertainment, but also electronic

documents and email. These aim to enable control of information flow within or-

ganisations, to prevent leaks and make theft of intellectual property more difficult.

In late 2003 Microsoft released its new Office suite of applications, with Information

Rights Management (IRM) facilities integrated into all the applications. These use

the Microsoft Rights Management architecture to enable restriction of document

flow, expiry, and controls on editing.

DRM technology within tamper-resistant hardware is not currently widely deployed.

IBM’s Enhanced Media Management System (EMMS) has an optional secure hard-

ware component [30], but most existing solutions are not specifically tamper-resistant.

The crucial DRM mechanism of the future could be Microsoft’s Next Generation

39

Secure Computing Base (NGSCB), previously called ‘Palladium’ – a whole set of

technologies to be integrated into the next generation of PCs, including a tamper-

resistant cryptographic coprocessor, and a special security kernel for Microsoft oper-

ating systems. NGSCB proponents hope that they will experience the same success

controlling PC media as that of media read by consumer electronics. But the more

complex APIs presented by DRM software on PCs will be hard to get right, whether

or not they are supported by back-end tamper-resistant hardware. It will not be a

surprise if the first generation of DRM hardware for PCs is only resistant to casual

attack.

4.7 Military Applications

There is unfortunately little information in the public domain about military appli-

cations of Security APIs (and there are no guarantees that the military knowhow

that has been published is not misleading, unintentionally or otherwise). Nuclear

command and control appears to have employed hardware enforcing simple Security

APIs that perform access control on arming of weapons. In particular, these APIs

implemented dual control policies – the arming must be authorised by multiple top-

ranking officials – that were permeated right through the command infrastructure

down to the devices themselves. There would then be no weak-spot where a single

person could seize control of an array of weapons. This application area certainly

seems to have catalysed the development of tamper-resistance, which is described

further in section 6.1. There is plenty of speculation about nuclear command and

control on the internet [44].

Battlefield radios certainly use cryptography to secure communications, and there is

indication that some military COMSEC equipment loads keys from a physical token

– a “crypto ignition key”. Such devices could be considered to have simple Security

APIs that ensure that keys can only be loaded and never extracted. A simple policy

such as this could however substantially mitigate the consequences of loss or capture

of the equipment.

4.8 Specialist Applications

Bills of Lading – Securing high-value business transactions such as sale or transfer of

goods in transit across the Atlantic, is a hard problem. When the goods cannot be

handed over in synchrony with the sale, there are a number of potential frauds, such

as selling the same goods twice. It may be months after a sale when an oil tanker’s

course finally becomes unique in differentiating between two probable destinations,

and these months can be used to launder the profit from a double sale and disappear.

Trading authorities have adopted a measure of computer security to uphold simple

40

policies on transactions (e.g. the same goods cannot be sold twice). A natural way

to implement such a policy is with an HSM.

Key-Loading Sites – Applications which deploy thousands of HSMs into a public en-

vironment, such as pay-TV smartcards and prepayment electricity meters all require

an infrastructure to initialise them before delivery. Generic manufacturing processes

are often followed by a key-loading phase, which may happen at an entirely different

facility from that where the manufacture took place. These key-loading facilities

can hold master keys which are used to derive the keys for a particular device, or

valuable signing keys used to certify the authenticity of a device. The same API

technology which protects the devices during deployment is thus used to secure the

loading process from potentially untrustworthy staff.

41

Chapter 5

The Security API Industry

This chapter introduces the major manufacturers of Hardware Security Modules,

focussing on HSMs that have well-developed Security APIs. It is intended as a non-

authoritative background reference to flesh out the reader’s understanding of the

companies that designed the major APIs discussed in this thesis. It also provides a

starting point for those seeking more APIs and material for future analysis.

5.1 People and Organisations using Security APIs

• HSM Manufacturers are in the business of producing the hardware that runs

code implementing a Security API. They may package their hardware in a

tamper-resistant enclosure, and will have to write firmware for loading the Se-

curity API code. There are 10–20 such companies worldwide. Many of them

nowadays try to market entire solutions, so have departments that consult on

Security API usage as well the production and R&D departments. The busi-

ness model can get quite complicated: for example, the IBM 4758 hardware

and firmware was designed at the T.J. Watson Research & Development labs,

is manufactured in Italy, and then sold at a subsidised rate (circa $2000-3000

per unit). The subsidy is then made back by licensing third-party code de-

velopment kits and performing specialist consulting. Over half of the HSMs

available on the market now support loading of third-party code – so a custom

Security API can be implemented. Other manufacturers (e.g. Thales) do not

advertise third-party customisation, but will provide it themselves as a service

if a client has a specific request.

• Product Integrators provide integrated solutions for corporate end users. They

design or customise both the Security API and the host software which in-

terfaces to it. Their business model may include selling continued support,

services and training for the integrated solution they have built. They may

develop their own code on top of the base services provided by an HSM, or

42

customise existing transaction sets. Whilst there are only a handful of HSM

manufacturers, there are a multitude of product integrators. The HSM man-

ufacturers licence out development kits themselves, and may do some of their

own product integration for larger clients.

• End User Corporations are those that buy an HSM solution for a standard

application, or commission a product integrator to make a specialist solution.

The employees of the company will likely interact with the API using some

host software supplied with it in the case of PKI solutions, or written by an

in-house programming team in the case of more specialist APIs. There may

be only one or two people in the corporation with a technical understanding

of the API, who will be responsible for maintaining the corporation’s host

software. The role of the in-house programmers is usually not to replace the

key management facilities – but to supply a further abstracted and simplified

API to other programmers. These simplified APIs are usually not security

critical and repackage only common commands (e.g. encryption, decryption,

signing). Alternatively the in-house team might make facilities available to

employees via a graphical interface. Note that the scope of API repackaging

may only cover the more basic commands; HSM manufacturers tend to keep

master key handling procedures – initialisation, cloning of modules, and recov-

ery from backup – quite distinct from those used by the normal applications

which interact with the HSM.

• Employees

Employees at corporations that use cryptographic equipment (excluding pro-

grammers themselves) may end up interacting with the Security API every

day. For example, staff at a certification authority that produces certificates

in correspondence with paper forms will be interacting with the Security API

to make every signature, as well as for authentication of their identity. Some

staff may even be aware of high-level rules enforced by the Security API, e.g.

bank tellers will be aware that money cannot be created nor destroyed – just

transferred between accounts. The interface presented to the staff members

themselves can also be considered a Security API if it has particular visible

policies controlling how the staff process sensitive information. Examples of

policies at this level are the anonymisation of individuals in research databases,

and account management functionality for bank tellers. This sort of high level

API was once attacked when an unscrupulous teller discovered that address

changes were not audited by the API. He first changed a customer’s address

to his own, reissued a card and PIN, then changed the address back again.

43

• Individuals, Customers, Clients

Individuals (and small companies such as merchants) may interact with Secu-

rity APIs embedded in equipment they use as part of their interaction with

other businesses of which they are customers. For an individual this may come

in the form of a smartcard for electronic banking; for a merchant it might be

the capture device for credit cards. They will likely be shielded from most of

the interaction with the API, but will probably be aware of some of the over-

riding principles from the API’s policy which affect how they must interact

with it. For example the user of the smartcard may know that a PIN has to

be presented to unlock access for certain commands, but they wouldn’t know

the specific function of these commands.

• Government Agencies such as NIST (National Institute of Standards and Tech-

nology) have a role producing cryptographic standards. NIST produces the

FIPS (Federal Information Processing Standard) series and involved with the

internationally recognised suite of ‘Common Criteria’ standards. The more

clandestine government agencies once kept themselves to themselves, but now

the NSA in particular has involvement in the commercial security community,

and maintains an interest in standards and evaluation. The NSA recently re-

leased code for the collaborative Secure Linux project [54], which has a special

security module (a module of code) which is privileged and enforces a set of

policies on how the applications can access the rest of the operating system.

• Validation Labs are a newer arrival to the Security API world – increasing

demand for conformance to government quality specifications from commercial

industry has led to the establishment of these private organisations, which

check commercial products against government standards. Previously, when

the military was the sole customer for cryptography, validation was performed

by the military, for the military. The availability of third-party evaluation labs

has led to an interesting shift in the way validation is done. Companies now

stipulate that they will only consider validated products, but the manufacturer

actually commissions the evaluation of the product. The validation labs then

make bids for evaluation, and (presumably) the contract is won by the lowest

bidder.

44

5.2 Corporate Timeline

5.2.1 1970 to 1990

Year Events

1972 NBS (precursor to NIST) requests standardised crypto algorithm

1974 IBM submits Lucifer algorithm to NBS

1974 IBM launches 3600 series finance system – ATM, Teller, PIN software

1976 DES released by NBS

1976 Diffie and Hellman invent public key crypto

1977 IBM 3845 DES encryption unit launched

1977 IBM extends its 3614 ATMs to use PIN derivation

1978 RSA invented

1979 IBM 3848 DES encryption unit released, which

is faster than the 3845 and supports 3DES

1979 IBM product development site in Charlotte opened

1979 Mykotronx founded in California, working for the NSA

1979 Eracom founded in Australia, producing

IBM channel connected HSMs

1981 IBM 4700 series finance system – ATM, teller, PIN software

1984 Rainbow Technologies founded in California, ‘Sentinel’

anti-piracy product highly profitable

1984 Eracom expands into Germany

1985 VISA Security Module introduced

1985 Eracom produces PC crypto card

1987 IBM µABYSS mesh introduced

1987 Rainbow floats

1989 IBM Transaction Security System (TSS) products introduced,

including CCA, 4755 high-speed crypto card,

4573 channel-attached crypto unit

1989 VSM clones appearing on market

45

5.2.2 1990 to 2000

Year Events

1991 IBM S/390 ICRF (Integrated CRyptographic Facility) launched

1991 Mykotronx gets US funding for Clipper Chip development

1991 Eracom produces first “secure application modules”

1992 IBM TSS adds public key crypto support

1993 Jan IBM 4753 Enhanced: add key distribution management,

& session level encryption.

1994 Chrysalis-ITS founded

1995 NIST FIPS 140-1 validation programme started

1995 Rainbow acquires Mykotronx

1995 Chrysalis ships first products

1996 May Racal SPS adds smartcard LMK loading, public key crypto

1996 nCipher founded

1996 IBM launches 4758-001 (as replacement for 4755)

1997 May Racal SPS introduces RG7110 high-speed ethernet HSM

1997 Jun IBM 4758 announced

1997 Oct Chrysalis Luna-1 token validated FIPS 140-1 Level 2

1997 Rainbow enters HSM market

1997 S/390 CCF single-chip CMOS crypto unit replaces ICRF,

and adds public key crypto

1998 Sep nCipher nFast validated FIPS Level 3

1998 Oct Chrysalis Luna CA3 validated FIPS Level 3

1998 Nov IBM 4758-001 first module validated FIPS Level 4

1999 Jan IBM S/390 CMOS Cryptographic Coprocessor validated Level 4

1999 Jan Racal SPS introduces “Websentry” HSM

1999 Nov IBM 4758-013 validated FIPS Level 3

1999 IBM 4758-002 launched

46

5.2.3 2000 to Present

Year Events

2000 Racal taken over by Thomson-CSF,

HSM manufacturing offshoot was ‘Zaxus’

2000 Rainbow launches CryptoSwift eCommerce accelerator

2000 Jan nCipher nShield validated FIPS 140-1 Level 3

2000 Jan nCipher Keysafe launched

2000 Jun IBM 4753 & 4755 discontinued

2000 Sep IBM 4758-002 Validated FIPS Level 4

IBM 4758-023 Validated FIPS Level 3

2001 Eracom opens US sales offices, merges with

Theissen Security Systems AG and others, keeps name

2001 Apr Zaxus becomes Thales eSecurity

2001 Apr nCipher launches SEE (Secure Execution Engine)

2001 Jul Eracom CSA8000 validated FIPS Level 3

2001 Aug Rainbow CryptoSwift HSM FIPS Level 3

2001 IBM zSeries servers release ‘PCICC’ custom

crypto platform, including a 4758

2002 nCipher floats on London Stock Exchange

2002 Mar nCipher CodeSafe launched

2002 Sep nCipher payShield (financial HSM) launched

2003 Rainbow acquires Chrysalis-ITS

2003 Jul Atalla Cryptographic Engine FIPS Level 3

2003 Oct nCipher netHSM launched

2003 IBM launches PCIXCC crypto card designed to replace

all previous crypto cards

47

5.3 Summary of HSM Manufacturers

5.3.1 IBM

http://www-3.ibm.com/security/cryptocards

IBM have been at the core of commercial cryptography from the start, and are

the largest company with an HSM department. In 1974 they introduced the first

ATM transaction processing systems for banks, and in 1977 developed the very first

HSM supporting DES encryption (the IBM 3845) that formed part of the transaction

processing system. This was followed by the IBM 3848, which supported asymmetric

key usage. Their present day 47 series HSMs are well known, but do not dominate

any market in particular. Of this series, the most recent is the IBM 4758. It started

life as a research project at T.J. Watson Labs, NY, to provide a general purpose

secure processing platform, and to supersede the ageing 4755 HSM. IBM went on to

achieve the first FIPS 140-1 Level 4 security evaluation for this device in 1998 – the

highest commercial evaluation available at the time. The sophisticated code-loading

and authentication architecture, state-of-the-art tamper-resistance, and efforts to

formally validate parts of the firmware put IBM’s 4758 in a league of its own. In

the closing few months of 2003 IBM has released word of the successor to the 4758,

which is called the ‘PCIXCC’. Unfortunately there is very little information about

its architecture and design at this time.

The most frequent application to be run on the 4758 is IBM’s “Common Crypto-

graphic Architecture” – a framework for financial cryptography which was intro-

duced as part of their Transaction Security Services (TSS) suite in 1989. To many

programmers, this product constitutes the Security API of the 4758 and there is

little need to interact with the 4758 firmware after initial loading (the CCA team

themselves dispensed with the outbound authentication functionality of the 4758’s

firmware API). The 4758 CCA is also sold as part of the 4753 – an HSM designed to

interact with mainframes, consisting of a stripped down PC with a 4758 and IBM

channel adaptor card.

5.3.2 Thales / Zaxus / Racal

http://www.thales-esecurity.com

Also known as:

Racal Secure Payment Systems (Racal SPS)

Zaxus

Thales eSecurity

Thales is the current owner of the Racal RG7000 series hardware security module –

probably the most widely deployed device in the banking community, which dom-

inates European markets. Their product brochures claim that 70% of the world’s

48

ATM transactions travel through RG7000 series devices. Racal SPS originally had

the contract to produce the VISA Security Module, but once VISA disassociated

their brand name with the device, it developed into the RG series HSMs. In 2000,

the HSM department split off to fend for itself, under the name ‘Zaxus’, but was

bought after a year or so by the multi-national conglomerate ‘Thales’. The original

Racal product lines have not been radically updated since their conception in the

80s – smartcards and keyswitches have augmented passwords for access control to

the HSMs, but the key management architecture in the RG7000 remains very dated.

The RG series devices are also not currently strongly tamper-resistant – their main

line of defence is a lid-switch whilst others such as IBM have had wire meshes and

even tamper-resistant membranes. In the RG series API lies a somewhat paradoxical

reputation: it must be respected for its continued dominance of the financial security

market, even though their technical product is way behind the other vendors.

Thales also produce less famous, but more advanced modules for electronic pay-

ments and PKI security, for example, their ‘Websentry’ product line, which uses the

PKCS#11 API and its own custom key management interface.

5.3.3 nCipher

http://www.ncipher.com

nCipher is one of the youngest HSM manufacturers out there, founded in 1996.

Their API is uniquely modern in that it is centred around public key cryptography.

Their first product was a hardware cryptography accelerator card – the ‘nFast’ –

which was designed to be fitted to web servers to increase their SSL capabilities, as

well as protect the private SSL keys, should the webserver be compromised. Their

focus is on performance and API security, not tamper-resistance. nCipher argues

that sophisticated tamper-resistance is overkill given the physical access controls

on the server rooms where these devices typically reside. Current nCipher devices

are available in potted form, and do have a tamper-responding component, but

they only claim tamper-evidence for their devices. Most of their products have

achieved FIPS 140-1 level 3 evaluation. As the success of their SSL acceleration

cards grew, nCipher released products including more and more key management

facilities, and redesigned their API to reflect this. They introduced the ‘nForce’ and

‘nShield’ devices – available in PCI and SCSI forms – which competed with products

from Baltimore and Chyrsalis to provide back-end protection for key material in

Certification Authorities.

Since 2001, nCipher have incorporated the Secure Execution Engine (SEE) tech-

nology into their devices. This facility allows third-party code to run within their

tamper-evident boundary, thus their HSMs are suitable devices for implementing

completely custom Security APIs. In early 2002 nCipher floated on the London

Stock Exchange; they compete with manufacturers such as IBM in the general pur-

49

pose crypto platform market, and since late 2002 have entered into the (already

saturated) financial security market alongside Thales and the others.

nCipher’s enduring informal trade mark is a blue LED on their modules which flashes

error codes in morse!

5.3.4 HP Atalla

http://www.atalla.com

Hewlett-Packard now owns the US based HSM manufacturer ‘Atalla’, who retain a

significant share of the US financial security market. They are the US equivalent of

Racal SPS – one of the manufacturers that has been there from the beginning. Their

financial security product range consists of Network Security Processors (NSPs), but

they have other product lines, including custom programmable modules. Atalla has

since 2001 been developing and marketing new key block formats which go some

way to addressing the key binding flaws first publicly identified the same year, in

the author’s paper “Attacks on Cryptoprocessor Transaction Sets”. Atalla runs a

series of web seminars linked from their website, which are a useful (if sales-oriented)

source of information about the financial security climate. Atalla’s new proprietary

key storage data formats are also being influential in the development of a new ANSI

X.98 standard for PIN processing.

5.3.5 Chrysalis-ITS

Chrysalis-ITS http://www.chrysalis-its.com

Rainbow http://www.rainbow.com

SafeNet http://safenet-inc.com

Chrysalis is a younger HSM vendor based in Toronto, Canada. They have been

floundering since the bursting of the dot com bubble: they were bought in 2002 by

Rainbow Technologies, which is now in the process of merging with SafeNet Inc.

During their early years, they were very closely involved with the design of the

PKCS#11, which is in fact modelled on their underlying ‘Luna API’.

They produce small PCMCIA form factor cryptographic tokens which use the PKCS#11

interface for access to the keys. There are a range of tokens available, with essentially

the same potential functionality, but customised for particular end user applications;

their main business is supporting certification authorities. Their small form factor

‘Luna’ tokens have quite low performance, so they also market separate accelerator

devices which temporarily take custody of the key material from the tokens.

50

5.3.6 Prism Payment Technologies

http://www.prism.co.za

Prism Payment Technologies is a South African HSM manufacturer that has swal-

lowed up a large portion of the SA crypto market. They have two major roots. The

first was the company ‘Linkdata’, which started out building electronic funds trans-

fer switches for routing PIN processing transactions. After a management buyout,

the name ‘Prism’ was created. They moved from there to focus substantially on the

prepayment electricity market, where they developed the TSM200 (see section 6.3.6

and section 7.3.11 for a fuller description including an attack on the API). They

were very successful in the SA prepayment electricity meter market, and also made

POS devices using the TSM200.

In late 2000 Prism acquired ‘Nanoteq’ from Comparex holdings. Nanoteq was an-

other SA HSM manufacturer that started out as a local builder and supplier of

communications security equipment for the SA military. South Africa was able to

support a number of different manufacturers during apartheid because of import

and export restrictions, and the concern that imported devices may have trapdoors.

Nanoteq was founded in the 80s, and later expanded into the commercial market

with POS devices, smartcards and a low-performance HSM called the SM500. In

1998 Comparex acquired Nanoteq, a small HSM manufacturer called CAT, and part

of Mosaic Software. Their product ranges were merged, and Mosaic software wrote

a financial API for use with CAT’s HSMs. It was this product range that Prism

acquired, rebranding it the ‘Incognito’ series.

The Incognito series includes the older TSM credit dispensing HSMs, and several

flavours of custom-programmable general purpose HSMs, which support authenti-

cated code loading, and performance similar to the IBM 4758.

5.3.7 Eracom

http://www.eracom-tech.com

Eracom is an Australian HSM manufacturer, founded in 1979. It has produced

general purpose cryptographic equipment such as a DES accelerator for block-level

disk encryption in 1985, and since 1991 has been producing programmable HSMs.

They have a strong secondary base of operations in Germany, and supply to various

continental European nations from there. Their HSM ranges are called ‘ProtectHost’

and ‘ProtectServer’, implementing Eracom’s proprietary ‘ProtectToolkit’ API.

51

5.3.8 Baltimore

http://www.baltimore.com

Baltimore was one of the first PKI vendors. They augmented their CA software

by acquiring an HSM manufacturer ‘Zergo’ (previously ‘Data Innovations’), and

produced HSMs to integrate into their CA solution. Their major product line was

the ‘Sureware Keyper’, which used PKCS#11 for access to key material, and had

an integrated display and keypad. Baltimore collapsed when the dot com bubble

burst, and their various acquisitions have been sold off.

5.3.9 Jones-Futurex

http://www.futurex.com

Jones-Futurex is a lesser known financial security HSM provider. Their modules

are not really coprocessors (as most HSMs are) but in fact entire PCs enclosed

within steel boxes. The host computer will communicate via a serial interface or

via a network connection, and key management tasks are performed via integrated

keyboard and monitor. They sell the majority of their units in the USA and Asia.

5.3.10 Other Security API Vendors

Microsoft

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

security/security/cryptography_portal.asp

Microsoft produce a software-only cryptographic API called ‘MSCAPI’ which is inte-

grated into Windows. It is a general-purpose API which provides crypto services to

applications and O/S components. Third-party developers can write Cryptographic

Service Providers (CSPs) which augment or replace the functionality of the default

CSPs.

RSA

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html

PKCS#11 is RSA’s generic interface standard for providing cryptographic services

to applications. It was developed by RSA in cooperation with various industry

partners, but the design borrows most from Chrysalis ITS’s ‘Luna API’.

PKCS#11 has been widely adopted since its release in c. 1996, and is very successful

in the sheer number of applications that use it as an interface to gain access to

their cryptographic services. It has a rather worse reputation however with HSM

52

manufacturers, because the standard leaves important policy issues unsettled, and

has coarse-grained and flawed key management facilities. Its usability has also been

called into question. Despite these worries, most manufacturers produce a device

which conforms in spirit to the PKCS#11 API, though there may be crucial semantic

differences that result in error messages if dangerous actions are attempted that the

specification appears to allow. Manufacturers implementing PKCS#11 also tend to

put the more complex aspects of key management in an orthogonal interface, and

only use the PKCS#11 API to provide simple encryption, decryption, signing and

verification services to the application.

The paper “On the Security of PKCS#11” [14], presented at CHES 2003, catalogues

some of the many weaknesses of the standard. It constitutes one of the first public

airings of these weaknesses, which have been muttered about by manufacturers, but

gone unaddressed for some time.

Cryptlib

http://www.cs.auckland.ac.nz/~pgut001/cryptlib

Cryptlib is an API created by Peter Guttman, who was tired of the low quality and

poor usability of software only implementations of Security APIs, such as PKCS#11

and MSCAPI, and decided to conceive his own design. It claims to have more elegant

‘enveloping’ and session management abstractions that make it powerful and easy

to use. Cryptlib is freely available on the internet and is open source.

5.3.11 Odds and Ends

The additional manufacturers listed here are less significant in the context of the

discussion in this thesis.

• “BBN” produce a range of HSMs and crypto accelerators, in particular their

SignAssure HSM, which is FIPS 140-1 Level 3 validated. Their website is

http://www.bbn.com.

• The “Trusted Computing Group” is an alliance of large software, hardware

and embedded systems vendors, whose goal is to develop open standards for

increasing the security of all manner of computing devices. It has grown out

of the “Trusted Computing Platform Alliance”, and contains the same big

five founding members: Compaq, HP, IBM, Intel and Microsoft, but now also

Sony, AMD and Sun Microsystems. Broadly speaking, the aim is to develop

better operating system security through hardware support (including native

crypto support) and architectural redesign. Microsoft is also busy making its

own trusted computing architecture, which may or may not turn out to be

supportable by the hardware developing in the TCG initiative.

53

The Trusted Computing Group will likely turn out to be a highly influential

organisation in the next five years, and produce some important standards,

but while these standards are in very early draft at the moment, their impact is

minimal. Their websites are http://www.trustedcomputinggroup.org and

http://www.trustedcomputing.org.

• “Wave” is a manufacturer of lightweight embedded HSM systems, and ven-

dor of PC application software which utilises the Trusted Platform Modules

(TPMs) that have already been integrated into some PC motherboards as part

of the TCPA initiative. They use these facilities to offer secure document stor-

age, signing, and try to deal with trust management issues too. Their website

is http://www.wave.com.

• “Prime Factors” make the Band Card Security System (BCSS) which is a

suite of software for providing back-end functionality for issuing ATM cards

to customers, and includes software only implementation of the functionality

provided by a typical Visa Security Module clone. Their website is

http://www.primefactors.com.

• “Trusted Security Solutions” (TSS) produces the A98 product range – con-

sisting of front and back end software for more securely establishing initial

keys at ATMs and Point-Of-Sale (POS) devices. One of their products is par-

ticularly interesting: it is an automated interactive voice telephone answering

service to allow ATM service engineers to report servicing and request and

acknowledge the flows of printed key material. It is unusual in that as well as

having a Security API to the host and the HSM itself, the interactive voice

service is essentially a sophisticated trusted path system. Their website is

http://trustedsecurity.com.

5.4 Interacting with Vendors

5.4.1 Buying from Vendors

In the PIN processing market, most HSM vendors sell directly to the banks, who are

in effect the end users. This because financial HSMs have a standard PIN processing

security policy hardwired which needs little if any modification to be appropriate for

any bank. Thales and Atalla provide a consultancy service to provide modifications

to the API specific to the requirements of certain banks doing unusual things. IBM

provides consultancy services, but also has created its UDX (User Defined eXtension)

toolkit [50] which allows their financial API, the CCA, to be extended with special

transactions to meet specific customer needs. They also substantially subsidise the

price of their 4758s, presumably making the money back in consultancy fees.

54

A bank will have a reasonable choice of vendors, so long as they do not have old

equipment that they want to remain compatible with. The PIN processing API

commands themselves vary little across manufacturers as they are so closely tied

in with the ISO PIN block standards, but the key management architectures have

varying degrees of complexity and granularity of access control. There are also a wide

range of authentication mechanisms to choose from. There is a mounting catalogue

of vulnerabilities in the current PIN processing architecture, few of which have been

addressed by anyone, so an absolute comparison of security has little value. The

default approach of comparing manufacturers on price and customer service seems

quite sensible. One pitfall is that performance figures are extremely warped. Almost

all of the vendors artificially limit their PIN processing transaction rates, so that

they can sell more HSMs. In the real world processing power continues to double

every 18 months, in accordance with Moore’s law; however, PIN processing power

has been put across as only linearly increasing, if that.

The big issues when buying PIN processing equipment may end up having little to do

with security, speed or price, but instead focus on legacy compatibility, both with

older PIN processing devices and with old mainframe software which still speaks

those protocols, and is very expensive to maintain because of the shortage of pro-

grammers skilled with these older languages. Thales inherited the particularly pow-

erful legacy API associated with the Racal RG7000 series HSMs, and their continued

success as the preferred choice for banks over immeasurably technically superior and

cheaper devices, gives pause for thought as to the importance of compatibility and

the power of brand names.

In the PKI market, the HSM choice is wider than that for PIN processing, but the

API choice tends to be more limited. End-users will typically be running heavy-

weight certification authority software that only talks to the HSM for providing the

actual signing operations, and taking final authorisation. Manufacturers such as

Baltimore provided both HSMs and CA software during the dot com boom; since

then the hardware and software suppliers have separated. The common API that

sits between the CA software and the HSM is PKCS#11. All the manufacturers

have versions of their HSMs which support the PKCS#11 API, but this API is

more of a framework than a concrete specification, and needs to be coupled with a

“conformance profile” document. The level of detail and availability of conformance

profile documents varies a lot. The key issues for the buyer to consider here are

performance and authorisation method. Public key operations are quite expensive,

especially generation, so supporting peak workload could be an issue. Chrysalis-

ITS’s Luna tokens are particularly poor in performance, but their PCMCIA form

factor can be considered advantageous in that they can be locked away in a safe

(the flip-side is that they can be more easily stolen or substituted for fakes).

The SSL and crypto acceleration market is probably the one most amenable to direct

comparison. Competition is based primarily around performance, but also ease of

integration. nCipher and Rainbow are major players. Performance figures will be

55

available, but should be carefully analysed, as tricks to boost apparent performance

figures are common, for example quoting a high rate for exponentiation, which turns

out to be based around the common small exponent case.

The two big players in the custom platform market are IBM and nCipher. Both

have good performance native crypto, and can be programmed in C. nCipher’s

secure execution engine is advantageous in that functionality can be built on top

of the nCore API, which makes building custom APIs much quicker, and keys and

data from the custom API can be manipulated using conventional commands issued

to the HSM as well as by talking to the custom command dispatcher. The 4758’s

advantage is its multi-layered approach to code loading (O/S and application can

be swapped in and out independently), and its outbound authentication facilities,

which allow you to remotely establish a secure session with the software running

inside the device. Many of the other smaller vendors do have custom programmable

devices, including Atalla, and also Prism whose programmable HSMs may predate

the 4758 in having such sophisticated functionality.

5.4.2 Reporting Faults to Vendors

From time to time users of Security APIs discover weaknesses (often while debug-

ging a failing application, or designing an interoperable device), and there is now

continuing academic research at the University of Cambridge specifically looking for

weaknesses in current APIs. Most vendors give a positive reception to information

fed to them about security flaws in their products, but they tend to be much more

cautious about providing feedback, and dealing with potential publicity.

If the aim of reporting the fault is to get the fault fixed, it is very important to

have the right points of contact within the vendor’s organisation. Dual entry points

are ideal – someone with the technical understanding to appreciate the attack, and

someone senior enough to be able to instigate changes (and maybe even make a

comment outside the company). When the fault that has significant real-world

consequences goes unaddressed by an unresponsive vendor, another option is to

encourage the media to champion the cause.

Media that speaks to a vendor’s client base is extremely influential, and can pressure

a vendor into making quite radical changes of policy. However, once the media is

involved, the battle is fought on an entirely higher (some would argue ‘inferior’) plane

– that of public relations. A key factor in a good news story is that it has two sides,

so an effective tactic for the vendor is to dead-wall journalists and researchers by

refusing to make any comment about vulnerabilities. If the story does go ahead, the

implication is that the discoverers of the flaw are so hopelessly uninformed about

the real-life implementation issues that their theories are irrelevant. However, a

well-informed and technologically savvy journalist can usually cut through this and

elicit a response. The drawback of pressuring vendors through the media is that

56

it is crude and unpredictable, and may end up doing more harm than good. In

particular, developing an adversarial relationship between finders of exploits and

the security architects trying to build them inhibits communication and does not

necessarily result in fixed systems which are better.

Many industries are not faced with high-visibility resourceful enemies however, and

the burst of attention surrounding media coverage can sometimes be considered

beneficial in shaking things up in these sorts of slow-moving industries. For example,

the PKCS#11 standard when read literally is really hopelessly insecure, and vendor’s

implementations now have much much more custom semantics to stop bad things

from happening. Here, the users of the standard seem to be well aware of the

shortcomings, but even with the right lines for feedback, gaining enough momentum

to push changes through is difficult. The publication of Clulow’s paper “On the

Security of PKCS#11” [14] might catalyse some significant revisions in the next

version of the standard. Another example is the author’s own experience publicising

a particular attack on the IBM 4758 CCA (see [51] for a summary of the publicity,

and section 7.3.7 for details of the attack itself). This publicity prompted the early

release of a new version of the CCA, version 2.41.

57

Chapter 6

Hardware Security Modules

6.1 A Brief History of HSMs

Hardware Security Modules (HSMs) have their roots in a military environment, just

as Security APIs do. It must be noted that the information in the public domain

about military usage of tamper-resistance is limited, and what information there

is may be misleading (whether unintentionally or through malice). This section

attempts only to give a flavour of the origins of tamper-resistant HSMs, which adds

some context to the devices we see implementing today’s Security APIs.

Early military HSMs were concerned with nuclear command and control, and com-

munications security. During the cold war, the nuclear arsenals of the two super-

powers grew and grew, and were deployed in allied countries as well as on home

soil, and along frontiers. In this new environment, an increased danger of ordinance

falling into the wrong hands was perceived. Following the Cuban missile crisis,

President Kennedy ordered that all US nuclear ordinance be got under “positive

control”. Permissive Action Links, also known as Prescribed Action Links (PALs),

were introduced to try to achieve this. The function of a PAL was to prevent the

device from detonating without a valid authorisation code being entered, and to this

end they were embedded deep within the warhead.

To prevent being bypassed, the PALs needed tamper sensors and tamper reactions.

HSMs usually take tamper-reaction for granted as information is relatively easy to

destroy, but for nuclear devices careful thought had to go into designing tamper-

reactive mechanisms that would render the bomb useless should the tamper sensors

be triggered. A range of tamper-reactions have been speculated (follow up [44] for

more info), for example

• gas injections into the core to turn the plutonium or uranium into a hydride

not dense enough to achieve critical mass.

• preventing uniform implosion of the core by varying the yield of the conven-

tional detonating explosives. During correct detonation, the yield variations

58

are compensated for by staggered timing of detonation. The timing informa-

tion is in effect a secret key, and is erased on tamper.

• soft detonation (i.e. non-nuclear detonation).

Figure 6.1: A control device for an early PAL

So in the field of military security, tamper-resistance developed to a high standard,

although policies that their HSMs enforced never became particularly sophisticated.

It is difficult to tell whether knowledge was really carried over from military appli-

cations, or whether the same technology was reinvented. Some lines of commercial

HSMs may have had the ability to build on aspects of military knowhow, for instance

Rainbow acquired the NSA defence contractor Mykotronx, and some of the early

South African HSM manufacturers supplied both military and commercial clients.

However, the initial needs for physical security in the commercial environment were

not perceived as very great, so most early tamper-resistance measures were ad hoc.

The Visa Security Module initially had simply a lid microswitch that would cut the

power to the RAM if the lid was removed. This served as an effective deterrent to

an inquisitive employee, as if triggered the master keys would be erased and require

reloading to bring the module back online – an event that would certainly be au-

dited. There was still a threat though: the HSM service engineer whose job was to

change the battery every six months was not a bank employee. He would be able to

legitimately open the device, then locate and disable the lid-switch on his first visit.

The next time he came to change the battery he could read out the RAM contents

trivially!

Tamper-resistance was gradually adopted to counter the service engineer threat,

and to provide greater protection in the event of physical theft of the device –

59

an increasing concern as the devices became smaller and more portable. IBM’s

4755 (a predecessor to the well-known 4758) used their “µABYSS” design – a fine

mesh of wires surrounding the module, which would trigger erasure of key material if

interfered with. This was probably the first commercially available tamper-detection

system not based around the lid-switch and steel enclosure paradigm.

HSM tamper-resistance continued to develop reactively as new physical attack tech-

niques were identified, although the counter-measures were often well developed by

the time knowledge of the threat reached the public domain. Temperature sensors to

combat data remanence attacks, and radiation sensors to combat data burning at-

tacks are both examples of counter-measures specifically designed to counter newly

discovered attack techniques. On chip tamper-resistance was also being developed

for smartcards at the same time.

In parallel to the increasing sophistication of tamper-resistance, the power and speed

of security modules increased as well. Due to the hardware-optimised design of DES

and the limited processing power available in mainframes, a common early perspec-

tive was that the dedicated cryptographic co-processor was simply responsible for

speeding up the crypto. IBM’s earliest hardware security modules – the 3845 and

3848 – were simply known as “DES encryption units”. An incentive to increase these

products in power gradually formed as it became more reasonable to use encryption

for security, and the sizes of data files encrypted went up. The idea of encryption of

files at a device driver level was also introduced; by 1985 Eracom was marketing a

“PC encryptor” ISA card, which allowed block by block encryption of floppy disks.

The catalyst for the next generation of hardware security modules was added in

the late nineties during the dot com boom. Public key cryptography was widely

hailed as the solution to the key exchange problems of the past, and dozens of com-

panies entered the PKI solutions market. However, big-integer modular arithmetic

was a problem poorly suited to traditional CPU architectures, and it dramatically

increased the load on general purpose processors in servers and desktops, that had

easily taken onboard symmetric cryptography. The next generation of HSMs were

thus accelerator cards for public key crypto, built first around embedded processors,

and eventually including dedicated hardware acceleration for modular arithmetic.

1997 saw the release of the nCipher nForce and the IBM 4758: both had hardware

acceleration for public key crypto.

The buzz-phrase for the very latest generation of HSM is “network attached”. Phys-

ical security can more and more be piggy-backed on the inevitable physical security

of server rooms containing valuable equipment, and if the crypto resources can be

located there they need not be so tamper-resistant. This in turn allows more heat

dissipation and higher performance. Chrysalis and nCipher both are now pushing

their network attached HSMs which essentially perform exactly the same function

as the old devices, but centralise the physical resources. The future of HSM design

looks set to be a battle between online centralised resources such as these, and inte-

gration of crypto functionality onto normal PC motherboards (and eventually into

60

processors themselves).

6.2 Physical Tamper-resistance

An HSM’s physical tamper-resistance can be a combination of both active and pas-

sive measures. Active tamper-resistance measures detect an attack taking place and

foil it by destroying the target of the attack (usually cryptographic keys). Passive

measures seek to make it harder to inspect and manipulate the active components

of the tamper-resistance, or simply make it harder to reach the key material.

Passive Measures

• Steel casing remains a popular and easy to understand tamper-resistant mea-

sure. The idea of an HSM as a PC in a safe is appealing to many in the

financial community. If an HSM is only as secure as the safe that its adminis-

trator keys are locked in, why not lock the whole thing in a safe? Whilst steel

casing may seem absurd compared with the high-tech state of the art, it is

particularly effective when combined with reasonable on-site physical security

– it is difficult to sneak an angle grinder into a server room. The sheer weight

of the casing also serves as an anti-theft mechanism, and some HSMs built

according to this philosophy include extra weight deliberately.

Figure 6.2: A prototype PCI card potted in epoxy between two glass sheets

61

• Potting is nowadays one of the most common tamper-resistance measures, as

well as a quite effective tamper-evidence layer. Choice of potting compound

will affect thermal dissipation (designing high-performance tamper-resistant

coprocessors is a nightmare), ease of manufacture, and of course ease of re-

moval. Figures 6.2 and 6.3 show examples of potted HSMs. nCipher’s PCI

HSMs (section 6.3.3) also have the potting clearly visible.

Figure 6.3: An IBM 4758-001 part potted in urethane, showing membrane and

interior (courtesy F. Stajano)

Active Measures

• Wire meshes were one of the first significant tamper-responding improvements

to replace lid switches. There are almost always coupled with a potting com-

pound which makes it difficult to move the wires, or apply patch leads. IBM’s

µABYSS appears to be the first commercial mesh design, which was used for

the 4755. The tamper response can be conductive – if wires are shorted or bro-

ken the sensor is triggered – or inductive, where the sensor is triggered if the

inductance of one of the loops changes. Conductive meshes respond rapidly

to tampering but can be defeated by patching, whereas inductive meshes are

more difficult to patch, but are slower to respond. In practice, inductive meshes

tend to be harder for an attacker to defeat, as the slowing in response time is

only of use for very fast attacks such as those using shaped charges.

• Conductive Membranes are the modern successor to wire meshes. The most

well-known producer of membranes for the HSM industry is Gore Industries.

Gore Industries 3D membrane is made of a special type of polyurethane which

62

is chemically very similar to their recommended potting compound, to make it

difficult to selectively dissolve away the potting without destroying the mem-

brane. It has multiple zig-zagging lines which are layered on top of each other,

made by selectively doping the membrane. A sample of the unpotted mem-

brane can be seen in figure 6.4. This technology is the commercial state of the

art.

Figure 6.4: The Gore Industries membrane

• Thermal Sensors protect against attacks involving cooling. Severe cooling

causes data remanence effects in RAM [37].

• X-Ray Sensors aim to detect radiation and erase key material before it can be

‘burned’ into the RAM by the intense radiation.

• Power Glitch Sensors detect fault induction attacks. They are important for

HSMs with constrained form factors, which cannot hold smoothing capaci-

tors internally, or must rely on an external clock, as with most smartcards.

Detection of glitches could trigger full key material erasure, or a more mea-

sured response such as performing a full reset of the processor, to prevent

any subsequent changes to the data or execution path of the code being acted

upon.

• PRNG Monitoring is also a consideration where hardware sources of random-

ness are employed. If the hardware effect can be altered by bathing it in

radiation, or changing the temperature, then the adverse affect on the entropy

of the source must be detected, otherwise deliberately weak keys can be intro-

duced into the system. If the API lets you generate keys with special privileges

to export others, this could lead to a serious compromise.

63

• Light Sensors can be coupled with sealed housings to make disassembly more

difficult. A simple light sensor can be trivially defeated by working for example

in infrared, until the sensor has been identified and covered. More sophisti-

cated designs involving wide band sensors or feedback loops transmitting and

receiving are considerably more difficult to bypass.

• Trembler Switches have been historically included in metal box devices as an

anti-theft measure more than a tamper-resistance measure. They are imprac-

tical in devices other than those that stay put in server rooms, and under those

conditions, the physical security is likely to prevent the theft easily anyway.

• Lid Switches were the first hint of tamper-resistance applied to commercial

modules such as the VSM. They are of course trivial to defeat if their locations

are known. However, the unknown locations (or even the uncertain existence)

of lid switches can provide a valuable deterrent to the otherwise opportunistic

employee, especially when there is only a single device, and rendering this de-

vice inoperative would be immediately detected and investigated. One of two

lid switches on the Luna XL cryptographic accelerator is shown in figure 6.5.

Figure 6.5: Lid switch on the Chrysalis Luna XL Accelerator

Sophisticated Measures

• Custom-pressure Air Gaps are probably the hardest physical tamper-resistance

measure to defeat. An air-gap encases the entire board at the core of the device,

or a particular intermediate layer, which contains pressure sensors connected

to the tamper-responding loop. A random pressure can be chosen, and the

64

device configured to trigger should this pressure not be maintained. In order

to defeat the device, either all pressure sensors must be disabled using some

other attack technique, or the device must be disassembled within a pres-

sure chamber. Herein lies the problem as pressure chambers are expensive,

rare, difficult for humans to work inside, and tend not to fit other necessary

equipment (e.g. focussed ion beam workstations) inside. Even then, the task

of measuring the air pressure in the gap without affecting it will be a diffi-

cult one. Although appealing, custom-pressure air gaps are rarely deployed,

probably due to practical difficulties of the design (e.g. compensating for the

effect of changing temperatures on air pressure), and simply because in the

commercial world they are in excess of security requirements.

• Shaped Charges are an appealing tamper-response, but seem to be the preserve

of the military. The same sort of technology used for armour piercing is used

on a smaller scale. There are a number of designs for the charges, that all

create a partial implosive effect. An example is a cylinder containing high

explosives, closed at one end, and with an inset cone of metal at the other,

typically copper or aluminium. Upon detonation, the copper progressively

implodes upon itself, forming an extremely hot and narrow plasma jet, which

is highly effective at rapidly destroying key material, and large amounts of

RAM or circuitry in general. Unless the action of drilling or opening somehow

triggers the charges, they are usually a tamper-responding component of the

system rather than actually a sensor. [35] shows a numerical simulation of a

copper jet erupting from a shaped charge.

Problems with Tamper-Resistance

Tamper-resistance can be costly to provide. The manufacturing process is slower

and more intricate, and of course testing and diagnostics may be more difficult with

a tamper-resistant device. The tamper-responding sensors themselves may not be

cheap. However, the big problem that designers run into is heat dissipation. Fast

processors run hot these days, and the thought of not having a fan, let alone not

even having a heat sink with air flow is ridiculous to some designers. Celestica [45]

develop packaging technology for tamper-resistant devices, and describe thermal

simulation methods for checking the properties of potted devices before prototyping

in their paper [12]. It seems that IBM paid this price willingly: their 4758-002 has

only an Intel 80486 processor running at 100MHz. Its successor, the PCIXCC, has

a faster processor, as well as many dedicated hardware crypto acceleration chips.

Allegedly, if all the chips function at once, the device could physically melt out of

its potting!

65

6.2.1 Tamper-Evidence

Hardware Security Modules may be tamper-resistant and/or tamper-evident. Tamper-

resistance is easy to understand – the device is designed such that any attempt to

modify its operation or learn secrets held within is thwarted. The device’s usual

response to tampering is to erase its memory, destroying cryptographic key material

and in many designs, rendering the device wholly nonfunctional. There are devices

such as alarm systems that strive to remain functional as well as be tamper-resistant,

but this behaviour is normally composed of conventional ceasing to function upon

tampering coupled with multiple independent systems checking up on each other.

Tamper-evidence is more subtle. One might desire for it to be possible to check

whether a particular boundary has been violated, that contains signing keys within.

The keys can then be revoked if this is the case, and only limited damage would

be done. However, whilst tamper-resistance is a property that a device holds with

respect to the rest of its environment, tamper-evidence requires a notion of device

identity, thus is defined in relation to an owner who must be able to identify the

device itself.

Figure 6.6: A crude tamper-evident seal on a Chrysalis device

This is a hard problem. The most extreme case is for an attacker to extract all keys

from a tamper-evident device, then load them legitimately into an identical looking

device. This new device will be able to perfectly emulate the old one; it need

then only look physically identical. A lot of deployed tamper-evidence measures

are quite cursory, for example sticky label seals over screws as in figure 6.6. More

rigorous measures such as engraving serial numbers and affixing holograms can go

part way to making the physical device difficult to copy, but it might always be

66

feasible to construct a copy of a tampered device given enough care and attention.

Tamper-evidence thus encapsulates some of the goals of anti-forgery methods. There

may also be quite a difference between the visibility of tampering which succeeds

in extracting key material, and the visibility of tampering which simply changes

the device’s operation to re-route its service requests elsewhere. In the case of

a PCI card HSM, this secondary link could take the form of a radio transmitter

hidden within the “tamper-evident” boundary. Alternatively, it might constitute a

sabotaged driver chip outside the tamper-evident enclosure which was assumed not

to be of security significance, that routes requests for the module back to a software

emulator on the host itself.

67

6.3 HSM Summary

This section introduces the HSMs implementing the APIs analysed in this thesis.

The survey is not exhaustive, and in particular only a sample of HSMs from manu-

facturers with large product lines are included.

6.3.1 IBM 4758-001

API CCA / CCA+UDX / PKCS#11 / Full Custom

Processor 80486 DX2 66

Introduced 1997

Features Level 4 Tamper-resistant enclosure

Multi-layer code loading architecture

Hardware DES and public key crypto acceleration

Form-factor PCI Card

FIPS Validation Level 4

Tamper-resistance Gore Industries Membrane, Urethane potting

Temperature & X-ray sensors, PRNG monitor

Dual nested aluminium casings , PSU smoothing

68

6.3.2 IBM 4758-002

API CCA / CCA+UDX / PKCS#11 / Full Custom

Processor 80486 DX4 100

Introduced 2000

Features Level 4 Tamper-resistant enclosure

Multi-layer code loading architecture

Hardware DES and public key crypto acceleration

Outbound Authentication

Form-factor PCI Card

FIPS Validation Level 4

Tamper-resistance Gore Industries Membrane, Urethane potting

Temperature & X-ray sensors, PRNG monitor

Dual nested aluminium casings , PSU smoothing

69

6.3.3 nCipher nForce

API nCore API / PKCS#11

Processor ARM

Introduced 1999ish

Form-factor PCI card / 5 1/2” drive bay (SCSI)

FIPS Validation Level 3

Tamper-resistance Potting, other measures unknown

70

6.3.4 nCipher nShield

API nCore API / PKCS#11 / Full Custom

Processor ARM

Introduced 1999ish

Form-factor 5 1/2” drive bay (SCSI)

FIPS Validation Level 3

Tamper-resistance Potting, other measures unknown

71

6.3.5 nCipher netHSM

API nCore API / PKCS#11 / Full Custom

Processor Power PC (Unconfirmed)

Introduced Oct 2003

Form-factor 19” Rack-Mount 1x height

FIPS Validation Not yet validated

Tamper-resistance Internal HSM potted, other measures unknown

72

6.3.6 Prism TSM200

API Proprietary

Processor Dallas (uncertain)

Introduced Mid 1990s

Form-factor ISA Card

FIPS Validation Not Validated

Tamper-resistance Unknown

73

6.3.7 Thales RG7000

API Proprietary

Processor Unknown

Introduced Late 1980s

Form-factor 19” Rack Mount 3x height (big heavy box)

FIPS Validation Not validated

Tamper-resistance Steel casing with mechanical lock

lid-switch, optional trembler sensor

74

6.3.8 Atalla NSP10000

API Proprietary

Processor Unknown

Introduced Mid 1990s

Form-factor 19” Rack-Mount 1x height

FIPS Validation Not Validated (unclear)

Tamper-resistance Steel casing with mechanical lock

other measures unknown

75

6.3.9 Chrysalis-ITS Luna CA3

API PKCS#11

Processor StrongARM

Introduced Late 1990s

Form-factor PCMCIA Token

FIPS Validation Level 3

Tamper-resistance Some cards potted, PRNG monitor,

other measures unknown

76

6.3.10 Visa Security Module

API Proprietary

Processor 6502 (uncertain)

Introduced Mid 1980s

Form-factor 19” Rack Mount 3x height (big heavy box)

FIPS Validation Not Validated

Tamper-resistance Steel casing with mechanical lock,

lid-switch

77

Chapter 7

Analysis of Security APIs

7.1 Abstractions of Security APIs

At the core of any analysis technique is a condensed and efficient representation of

the design that is to be reasoned about. It must be easy for the analyst to visualise

and manipulate it in his head. This section describes several useful abstractions of

Security APIs, each of which captures a slightly different aspect of API design.

7.1.1 Describing API Commands with Protocol Notation

It is easy to describe API commands using the conventional protocol notation that

has been popular since the time of the BAN logic paper [11]. The notation used here

is introduced with the oft-quoted Needham-Schroeder Public Key Protocol. It is a

slightly simplified curly bracket notation, which does not bother with subscripts.

A -> B : { Na , A }Kb A −→ B : {NA, A}KB
B -> A : { Na , Nb }Ka B −→ A : {NA, NB}KA
A -> B : { Nb }Kb A −→ B : {NB}KB

In addition to understanding how to represent operations such as encryption and

pairing, fairly standard conventions are in use for putting semantics into the variable

names – Na is a nonce generated by A, Ka^-1 may represent the private key of A.

Similar conventions are required to concisely describe Security API commands.

KM or Km is the master key of the HSM. HSMs with multiple master keys have each

master key named after the type it represents. So

{ K1 }TC

78

Accepting a clear key value to become a ‘TC’ key

User -> HSM : K1

HSM -> User : { K1 }TC

Translating a key from encryption under key X to key Y

User -> HSM : { K1 }X , { X }KM , { Y }KM

HSM -> User : { K1 }Y

Adding together encrypted values

User -> HSM : { A }KM , { B }KM

HSM -> User : { A+B }KM

Verifying a password

User -> HSM : { GUESS }KM , { ANS }KM

HSM -> User : if GUESS=ANS then YES else NO

Figure 7.1: Example commands in protocol notation

represents a key K1, encrypted with the master key used for storing ‘terminal com-

munications’ keys. Therefore TC itself is not the terminal communications key – K1

is. This distinction needs to be held in mind when multiple layers of key are in use.

Transactions are represented by two lines of protocol, one describing arguments

send, the other describing the result. A few examples are shown in figure 7.1.

The protocol representation may also borrow from other fields of mathematics and

include pseudocode, as seen in last two examples in figure 7.1. The semantics of the

command are hopefully still clear.

However, protocol notation gets into trouble because it represents the HSM parsing

and decryption of the inputs implicitly. Many weaknesses in transaction sets arise

because of interactions during decryption, and poor handling of error states. In

these situations, using extra pseudocode in protocol notation becomes cumbersome

once too many conditional actions have to be represented. The protocol lines in

figure 7.2 show two common commands from the IBM 4758 CCA transaction set.

The first describes the final step of construction of a key encryption key (KEK),

where the user provides the third of three component parts, and it is XORed together

with the previous two. The key used to encrypt the first two components is the CCA

master key, XORed with a control vector imp/kp. The ‘/’ symbol in the control

vector represents the use of XOR (shown elsewhere as ‘⊕’) specifically to combine

control vectors and keys together; the semantics identical to ‘⊕’, but the visual cue

79

First Command: Key Part Import

User -> HSM : KP3 , { KP1 ⊕ KP2 }KM/imp/kp , imp/kp

HSM -> User : { KP1 ⊕ KP2 ⊕ KP3 }KM/imp

KEK1 = KP1 ⊕ KP2 ⊕ KP3

KEK2 = KP1 ⊕ KP2 ⊕ KP3 ⊕ (pmk ⊕ data)

Second Command: Key Import (in normal operation)

User -> HSM : { PMK1 }KEK1/pmk , { KEK1 }KM/imp , pmk

HSM -> User : { PMK1 }KM/pmk

Second Command: Key Import (when the attack is performed)

User -> HSM : { PMK1 }KEK1/pmk , { KEK2 }KM/imp , data

HSM -> User : { PMK1 }KM/data

Explanation of actions performed

1. HSM decrypts { KEK2 }KM/imp with master key and implicitly claimed type imp

2. HSM decrypts { PMK1 }KEK1/pmk using KEK2 and explicitly claimed type data

3. HSM encrypts PMK1 with master key and explicitly claimed type data

Figure 7.2: The CCA typecasting attack represented in protocol notation

can help the reader identify the control vector. The control vector imp/kp represents

the fact that it is a key part (kp), and that the finished key is to be of type importer

(imp). On completion of the final command the combined key is returned in a ready

to use form – encrypted under KM, with control vector imp.

The protocol notation in figure 7.2 appears to be performing well, but while it does

describe a normal input and output of the transaction, it doesn’t actually capture

the semantics of what happens. Firstly, a fourth input is implicitly present – control

information to let the HSM know that this is the last component, and it is to proceed

with completing the key. If this control information were not supplied, the command

would respond with { KP1 ⊕ KP2 ⊕ KP3 }KM/imp/kp, which would not be usable.

Secondly, the third input is an explicit naming of the control vector associated with

the encrypted key part. If we assume that the HSM can explicitly identify the input

data type (as is often the case in security protocols), we do not need this input,

but we lose the semantics of the command, and we lose the opportunity to discover

attacks which hinge on this.

When an operational key is imported under a KEK, its key type has to be explicitly

stated as before. However, this time, the explicitly stated control vector can interact

with the value of the KEK, which the attacker may have some degree of control over.

If the attacker can formulate KEK2, then PMK1 will be correctly decrypted and re-

encrypted under the master key, except with a new type associated. The attack

80

works because the modification to the claimed KEK for import cancels out the error

which would have otherwise occurred from wrongly specifying the type of the key

to be imported as data. This attack is described in section 7.3.4. The important

issue here is not to understand the attack, but to realise that the protocol notation

not only fails to convey certain parts of transaction semantics, but cannot represent

the semantics even when the author deliberately intends it to.

Representing decryption implicitly by matching keys and then stripping away en-

cryption braces is not effective for describing many problems with APIs.

In conclusion, protocol notation is useful for two things:

1. explaining what a command achieves, and what it is supposed to do but, not

how it works, and

2. showing the inputs and outputs of a command in a specific instance.

Discussion of the limitations of the notation is not a prerequisite to understanding

the attacks described in this thesis, but is intended to serve as a warning to take care

about notation for transaction sets when describing them to others. In section 7.4.4,

a tool developed by the author for API analysis is described: its notation is suffi-

ciently explicit to avoid these problems. However, even that notation is somewhat

cumbersome when representing transactions with lots of conditional processing.

7.1.2 Key Typing Systems

Assigning and binding type information to keys is necessary for fine-grained access

control to the key material and transactions. Designers must think carefully about

key types and permitted usage when turning a high-level policy into a concrete API

design – it is useful to envisage these restrictions as a type system.

ZCMKTMK/PIN WK

TC

LPZCMK_I TMK_I WK_I

TC_I(CLEAR)(RAND)

Figure 7.3: Example type system from the VSM

Many transactions have the same core functionality, and without key typing an

attacker may be able to abuse a transaction he has permission to use, in order to

81

achieve the same functionality as one that is denied to him by the access control.

For example, deriving a PIN for an account with a financial security API is simply

encryption with DES, just as you would do with a data key for communications

security. Likewise, calculation of a MAC can be equivalent to CBC encryption, with

all but the last block discarded. A well-designed type system can prevent the abuse

of the similarities between transactions.

Fred
SRAND

TEM_I
(BLOB1)

YMAC

XMAC FEK

CLEAR

TK_IRSA-IMP
PRIV

FAK

RSA-IMP

RAND
EKEY
PRIV

RSA_IMP_I RSA_IMP_I

FAK FEK

CMAC_I TEM_I
(BLOB2)

Figure 7.4: Example type system from real world application

Figures 7.3 and 7.4 show examples of a type system represented graphically. The

transactions are shown as arrows linking two types together, and can represent only

the major flow of information in the transaction. Consider figure 7.3. The labelled

boxes represent the Security API’s types. For a typical monotonic API a box will

contain keys encrypted under the key named in the box label. For instance, a

working key W1 is considered to be of type WK, and will be presented to the box in

encrypted forms as { W1 }WK. The main point that must be grasped is that WK refers

both to the type Working Key, and to the master key under which working keys are

themselves encrypted.

Some labels have the suffix ‘_I’ appended. This stands for the type of data encrypted

under an instance of a particular type. Take for example WK_I. This type represents

data that is encrypted under a particular working key e.g. { DATA }W1 where W1

is the particular working key, and is presented to the HSM in the form { W1 }WK.

The box marked WK_I thus represents not really one type, but in fact a whole set of

types.

82

Certain box names have specific meanings in all the diagrams: CLEAR represents

unprotected, unencrypted clear data or key material that can be chosen by the user,

RAND represents a random number generated by the HSM which is unknown to the

user, SRAND represents an unknown but reproducible random number – such as one

derived from encrypting some data of the user’s choice.

Just like protocol notation, the graphic type system notation is not a formal one,

but it can capture a lot of the semantics of a type system in quite a small space.

IBM’s Common Cryptographic Architecture (CCA) deals with key typing in an

interesting way. The CCA name for the type information of a key is a control

vector. Rather than using completely disjoint master keys for types, the system

of control vectors binds type information to encrypted keys by XORing the control

vector with a single master key used to encrypt, and appending an unprotected copy

(the claimed type) for reference.

EKm⊕CV (KEY) , CV

This control vector is simply a bit-pattern chosen to denote a particular type. If a

naive attacker were to change the clear copy of the control vector (i.e. the claimed

key type), when the key is used, the HSM’s decryption operation would simply

produce garbage.

DKm⊕CV MOD(EKm⊕CV (KEY)) 6= KEY

This mechanism is sometimes called key diversification, or key variants ; IBM holds

a number of patents in this area. The implementation details are in “Key Handling

with Control Vectors” [33], and “A Key Management Scheme Based on Control

Vectors” [34].

7.1.3 Key Hierarchies

Storage of large numbers of keys becomes necessary when protecting data from

multiple sources, or originating from multiple users with differing levels of trust,

as it limits damage if one key is compromised. Keys are commonly stored in a

hierarchical structure, giving the fundamental advantage of efficient key sharing:

access can be granted to an entire key set by granting access to the key at the next

level up the hierarchy, under which the set is stored.

Confusion arises when the hierarchy serves more than one distinct role. Some HSMs

infer the type of a key from its position in the hierarchy, or use hierarchies simply

to increase their effective storage capacity when they can only retain a top-level key

within their tamper-resistant enclosure.

83

Figure 7.5 shows a common key management hierarchy with three layers of keys.

The top layer contains ‘master keys’ which are never revealed outside the HSM, the

middle layer transport keys or key-encrypting-keys (KEKs) to allow sharing between

processors, and the bottom layer working keys and session keys – together known as

operational keys, The scope of some HSMs extends to an even lower layer, containing

data encrypted with the operational keys.

KEKs

User Data

Outgoing Working Keys

Master Key

KEK MK DATA MK
Master
Keys

Operational
Keys

Transport
Keys

User
Data

Shared Data

Incoming

Shared Data

Rectangles
represent TYPES

Ovals
represent KEYS

Figure 7.5: An example key hierarchy

7.1.4 Monotonicity and Security APIs

Many Security APIs contain very little internal state. The state of the system as a

whole is usually stored as a set of encrypted terms, any of which can be presented

as inputs to the commands. Once a new output has been produced by executing a

command on a particular combination of inputs, this output can be added to the

set of all terms known (referred to as the Knowledge Set of the user). If this set

increases in size monotonically, it will always be possible to present a set of inputs

again and retrieve the same output at a later time, and the ability to use a piece of

knowledge can never be lost.

When a model of a Security API can demonstrate this property, certain sorts of

analysis become much easier, as the problem becomes one of reachability – whether

a particular piece of knowledge be obtained. The data structures for storing mono-

tonically increasing knowledge can be much simpler and more condensed.

In real life, some APIs do come very close to perfect monotonicity. The Visa Security

Module and similar designs have only the master key for the device as internal state.

Monotonicity is broken during a master key update operation, but this is a privileged

84

command not available within the threat model of a realistic attacker, so as far as

the attacker is concerned, the API is still monotonic.

APIs have to break this property to implement certain useful functionality such as

counters. Counters are very useful to allow HSMs to dispense limited amounts of

credit tokens (e.g. prepayment electricity meters, mobile phone top-up codes), and

to limit the number of signatures which can be performed with a key. An API simply

cannot be monotonic if counters are used, as they specifically break the property

that a command execution can be repeated at any time.

One API – that of the Prism TSM200 – has a fundamentally non-monotonic design.

Keys are stored in one hundred different internal slots, and once loaded are accessed

by slot identifier rather than by presenting an encrypted input. The keys are ar-

ranged in a hierarchy, each key recording the identifier of its parent. Actions that

change the contents of one slot trigger a cascading erasure of keys in slots which

record the changed slot as their parent. Thus there is no simple guarantee that a

key once available will remain available for use.

85

7.2 The Attacker’s Toolkit

This section discusses the vulnerabilities found in Security APIs analysed during

the course of the author’s research. Some of the vulnerabilities are easily turned

into attack implementations, whilst others are building blocks, which must be used

in conjunction with other weaknesses to crystallise an attack. Section 7.3 describes

attacks constructed from applications of these techniques.

7.2.1 Unauthorised Type-casting

Commonality between transactions makes the integrity of the type system almost

as important as the access controls over the transactions themselves. Once the type

constraints of the transaction set are broken, abuse is easy (e.g. if some high security

key encrypting key (KEK) could be retyped as a data key, keys protected with it

could be exported in the clear using a standard data deciphering transaction).

Certain type casts are only ‘unauthorised’ in so far as that the designers never

intended them to be possible. In IBM’s CCA, it is difficult to tell whether a given

opportunity to type cast is a bug or a feature! IBM in fact describes a method in the

appendix of the manual for their 4758 CCA [16] to convert between key types during

import, in order interoperate with earlier products which used a more primitive type

system. The manual does not mention how easily this feature could be abused. If

type casting is possible, it should also be possible to regulate it at all stages with

the access control functions.

The problem is made worse because HSMs which do not maintain internal state

about their key structure have difficulty deleting keys. Once an encrypted version

of a key has left the HSM it cannot prevent an attacker storing his own copy for

later reintroduction to the system. Thus, whenever this key undergoes an authorised

type cast, it remains a member of the old type as well as adopting the new type. A

key with membership of multiple types thus allows transplanting of parts of the old

hierarchy between old and new types. Deletion can only be effected by changing the

master keys at the top of the hierarchy, which is radical and costly.

7.2.2 The Meet-in-the-Middle Attack

The idea behind the meet-in-the-middle attack is to perform a brute force search of

a block cipher’s key space to find not a particular key, but any one of a large set of

keys. If you can encrypt some test pattern under a set of keys, and can check for a

match against any ciphertext in this set simultaneously (for instance using a hash

table), you have all you need. The maths is common sense: the more keys that you

attack in parallel, the shorter the average time it takes to discover one of them by

luck.

86

The technique is particularly powerful against security modules with monotonic

APIs. Users will typically be able to generate as many keys as they wish, and store

them locally on the hard drive. Once one of these keys has been discovered, it

can normally be selected as the key is used to protect the output of a command,

provided it is of the correct type. This is the price of using a type system to specify

permitted actions: if even just one key within a type is discovered, a catastrophic

failure can occur – select the cracked key, export the rest under it.

The attacker first generates a large number of keys. 216 (65536) is a sensible target:

somewhere between a minute’s and an hour’s work for the HSMs examined. The

same test vector must then be encrypted under each key, and the results recorded.

Each encryption in the brute force search is then compared against all versions of

the encrypted test pattern. Checking each key may now take slightly longer, but

there will be many fewer to check: it is much more efficient to perform a single

encryption and compare the result against many different possibilities than it is to

perform an encryption for each comparison.

In practical use, the power of the attack is limited by the time the attacker can

spend generating keys. It is reasonable to suppose that up to 20 bits of key space

could be eliminated with this method. Single DES fails catastrophically: its 56-bit

key space is reduced to 40 bits or less. A 240 search takes a few days on a home PC.

Attacks on a 64-bit key space could be brought within range of funded organisations.

The attack has been named a ‘meet-in-the-middle’ attack because the brute force

search machine and the HSM attack the key space from opposite sides, and the

effort expended by each meets somewhere in the middle.

Meet-in-the-Middle Maths

The average time between finding keys in a brute force search can be calculated

by simple division of the search space by the number of target keys. However, it

is more useful to consider the time to find the first key and this requires a slightly

more complex model of the system using a Poisson distribution. The probability

that the first r guesses to find a key will all fail is e−λr where λ is the probability

any given attempt matches (e.g. when trying to search for one of 16384 DES keys

λ will be: 214/256 = 2−42). An example calculation of the expected time to finding

the first key using a hardware meet-in-the-middle DES cracker is in [53].

7.2.3 Key Conjuring

Monotonic HSM designs which store encrypted keys on the host computer can be

vulnerable to unauthorised key generation. For DES keys, the principle is simple:

simply choose a random value and submit it as an encrypted key. The decrypted

result will also be random, with a 1 in 28 chance of having the correct parity. Some

87

early HSMs actually used this technique to generate keys (keys with bad parity were

automatically corrected). Most financial APIs now check parity but rarely enforce

it, merely raising a warning. In the worst case, the attacker need only make trial

encryptions with the keys, and observe whether key parity errors are raised. The

odds of 1 in 216 for 3DES keys are still quite feasible, and it is even easier if each

half can be tested individually (see the binding attack in section 7.2.5).

7.2.4 Related Key Attacks

Allowing related keys to exist within an HSM is dangerous, because it creates de-

pendency between keys. Two keys can be considered related if the bitwise difference

between them is known. Once the key set contains related keys, the security of

one key is dependent upon the security of all keys related to it. It is impossible to

audit for related keys without knowledge of what relationships might exist – and

this would only be known by the attacker. Thus, the deliberate release of one key

might inadvertently compromise another. Partial relationships between keys com-

plicate the situation further. Suppose two keys become known to share certain bits

in common: compromise of one key could make a brute force attack feasible against

the other. Related keys also endanger each other through increased susceptibility

of the related group to a brute force search (see the meet-in-the-middle attack in

section 7.2.2). Note that the concept of related keys can be extended past partial

relationships to purely statistical relationships. There is a danger during analysis

that an architectural weakness gets spotted, but only one concrete manifestation of

the unwanted relationship is removed, and the statistical relationship remains.

Keys with a chosen relationship can be even more dangerous because architectures

using key variants combine type information directly into the key bits. Ambiguity is

inevitable: the combination of one key and one type might result in exactly the same

final key as the combination of another key and type. Allowing a chosen difference

between keys can lead to opportunities to subvert the type information, which is

crucial to the security of the transaction set.

Although in most HSMs it is difficult to enter completely chosen keys (this usually

leads straight to a severe security failure), obtaining a set of unknown keys with a

chosen difference can be quite easy. Valuable keys (usually KEKs in the hierarchy

diagram) are often transferred in multiple parts, combined using XOR to form the

final key. After generation, the key parts would be given to separate couriers, and

then passed on separate data entry staff, so that a dual control policy could be

implemented: only collusion would reveal the value of the key. However, any key

part holder could modify his part at will, so it is easy to choose a relationship between

the actual value loaded, and the intended key value. The entry process could be

repeated twice to obtain a pair of related keys. The Prism TSM200 architecture

actually allowed a chosen value to be XORed with almost any key at any time.

88

7.2.5 Poor Key-half Binding

The adoption of 3DES as a replacement for DES has led to some unfortunate API

design decisions. As two-key 3DES key length is effectively 128 bits (112 bits of key

material, plus 16 parity bits), cryptographic keys do not fit within the 64-bit DES

block size. Manufacturers have thus come up with various different approaches to

storing these longer keys in encrypted form. However, when the association between

the halves of keys is not kept, the security of keys is crippled. A number of APIs allow

the attacker to manipulate the actual keys simply by manipulating their encrypted

versions in the desired manner. Known or chosen key halves can be substituted into

unknown keys, immediately halving the keyspace. The same unknown half could

be substituted into many different keys, creating a related key set, the dangers of

which are described in section 7.2.4.

3DES has an interesting deliberate feature that makes absence of key-half binding

even more dangerous. A 3DES encryption consists of a DES encryption using one

key, a decryption using a second key, and another encryption with the first key.

If both halves of the key are the same, the key behaves as a single length key.

(EK1(DK2(EK1(data))) = EK(data) when K = K1 = K2). Pure manipulation of

unknown key halves can yield a 3DES key which operates exactly as a single DES

key. Some 3DES keys are thus within range of a brute force cracking effort.

7.2.6 Differential Protocol Analysis

Transactions can be vulnerable even if they do not reveal a secret completely: partial

information about the value of a key or secret is often good enough to undermine

security. Differential Protocol Analysis, coined by Anderson and the author in [4],

is the method of attacking APIs by methodically varying input parameters, and

looking for differentials in output parameters which vary in a way dependent upon

the target secret. An individual command can be treated like a black box for the

purposes of differential analysis, though of course it may help the attacker to study

the internal workings of the command to choose an appropriate differential.

The first instances of differential attacks on Security APIs were only published during

early 2003; there are not enough examples available to reason about the general

case. The examples that have been discovered tend to exploit a trivial differential –

that between normal operation, and some error state. This is the case in Clulow’s

PAN modification attack [15]. However, the same weaknesses that leak information

through crude error responses, or via a single bit yes/no output from a verification

command for example, are at work in the outputs of other API commands.

The principle of differential protocol analysis is best illustrated through the example

of the decimalisation table attack on PIN generation in a financial security HSM. In

this section, the attack is described in a simplified way – full details are in section

7.3.10.

89

PIN numbers are often stored in encrypted form even at machines which have the

necessary key to derive the PIN from the account number of a customer. These

encrypted PINs are useful when giving PIN verification capability to a financial

institution who can be trusted with verifying PINs in general, but may not be trusted

enough to take a copy of the PIN derivation key itself, or when sending correct PINs

to a mailer printing site. The API thus has a command of the following form:

User -> HSM : PAN , { PMK }KM , dectab

HSM -> User : { PIN1 }LP

where PAN is the Primary Account Number of the customer, PMK is the PIN derivation

key (encrypted with the master key) and dectab is the decimalisation table used in

the derivation process. The PIN is returned encrypted with key LP – a key for local

PIN storage1.

Section 7.3.10 describes an attack on a PIN verification command, which calculates

a customer PIN from a PAN using a specified decimalisation table, and then gives a

yes/no answer as to whether a guess matches it.This PIN verification command can

be used to learn information about the secret PIN. With an average of 5000 guesses,

the verification command will respond with a yes, and the PIN is discovered. How-

ever, the attack improves on this. It works by changing a digit in the decimalisation

table, and observing whether or not the PIN generation process interacts with the

specific digit in the table changed. If there is an interaction, the PIN verification

will fail instead of succeed, and from this fact, one of the digits composing the PIN

can be deduced. The attack can be thought of as improving the rate of information

leakage from the command from 1 combination to about 1000 combinations per

guess. However, when the attacker does not have access to enter chosen PINs, this

variant of the attack seems to be fixed. This is not the case, because the information

leakage can still manifest itself as a differential. Look now at the PIN generation

procedure in figure 7.6: only some of the digits in the decimalisation table will af-

fect the specific PIN generated for a particular account, as the result of encrypting

the PAN can only contain up to four different hexadecimal digits in the first four

characters.

Thus if the decimalisation table is modified from its correct value, as in transaction

B, if the modification affects the PIN generated, a differential will appear between

the values of the first and second encrypted PINs . This is a true differential attack

because neither run of the protocol reveals any information about the PIN in its

own right. This is unlike the decimalisation table attack upon the verification phase,

where both the normal and attack runs of the command each leak information.

1For a description of an attack on a command of this form which does not rely upon the

manipulation of the decimalisation table, see the forthcoming paper “Encrypted? Randomised?

Compromised? (When cryptographically secured data is not secure)”

90

(Transaction A) (Transaction B)

PAN 4556 2385 7753 2239 4556 2385 7753 2239

Raw PIN 3F7C 2201 00CA 8AB3 3F7C 2201 00CA 8AB3

Truncated PIN 3F7C 3F7C

0123456789ABCDEF 0123456789ABCDEF

0123456789012345 0120456789012345

Decimalised PIN 3572 0572

PIN Block 4F1A 32A0 174D EA68 C3AA 02D6 7A8F DE21

Figure 7.6: A differential in outputs of the Encrypted PIN Generate Command

The verification attack described in section 7.3.10 could be considered an instance of

a differential attack, but with a trivial differential. Many of the attacks discovered

on financial APIs by the author and Clulow exploit such trivial differentials, as

these seem to be comparatively easy to spot. However, when fixing the APIs to

prevent the attacks, all types of differential must considered, not just the trivial

cases. Furthermore, even when protocol output differentials are secured, there are

always the threats of timing, power or electromagnetic differential attacks on the

security module.

7.2.7 Timing Attacks

Timing attacks are an important element in the toolkit of a software only attacker, as

unlike power analysis or electromagnetic emissions attacks, they do not necessarily

require physical tampering with the host or access to the exterior of the HSM. With

sabotaged device drivers, it should be possible in many cases to perform timing

attacks from the host computer, and if the clock speed of the host processor is

substantially higher than that of the HSM, counting iterations of a tight loop of

code on the host should suffice for timing. Embedded processors inside HSMs run

at only several hundred megahertz at the most, so a host machine with a clock rate

of 1GHz or above should have no difficulty at all in measuring timing differences

between executions of HSM commands to instruction granularity. Many comparison

operations between long character strings are implemented using memcpy, or in a loop

that drops out as soon as the first discrepancy is discovered. This sort of timing

attack was used long ago to find partial matches against passwords in multi-user

91

operating systems. Naively implemented RSA operations also have data-dependent

timing characteristics.

7.2.8 Check Value Attacks

Nearly all HSM designs use some sort of check value to allow unique identification of

keys, establish that the correct one is in use, or that a key manually loaded has been

entered correctly. Older HSM designs revolved around symmetric cryptography, and

a natural way chosen to create a check value was to encrypt a known constant with

the key, and return part or all of the ciphertext as a check value. Any module

supporting this sort of check value comes immediately under attack if the known

plaintext encrypted under a key can be passed off as genuine data encrypted under

that key.

A variety of lengths of check value are in common use, the differences dictated by the

different understandings of the primary threat by the designers. Full-length check

values on single DES keys were rapidly seen as targets for brute force attacks, and

furthermore as at risk from dangerously interacting with the set of encrypted values

under that key. The Visa Security Module and its clones have shortened check val-

ues to six hex digits, in particular to avoid potential usage of the encrypted check

value as a known key, but some other designs do not bother to shorten the value.

Unfortunately some general-purpose APIs found themselves needing to support cal-

culation of a range of different types of check value, in order to perform checks on

the secure exchange of keys between that device and an older one. These APIs thus

had configurability of their calculation method. This is the worst case of all, as even

if a system only uses short check values, it may still be possible to calculate long

ones.

Check values do not just open up the risk of pure brute force attacks, they can also

enable the meet-in-the-middle attack on suitably sized key spaces, by providing a

test for a correct match; they can also undermine key binding – for example in the

Prism TSM200 where each half of the 3DES master key had a separate check value.

Modern APIs such as nCipher’s nCore API identify a key uniquely by hashing it

along with its type information. It is computationally infeasible to create a SHA1

collision, so these identifiers are generally speaking safe to use. However, in order to

be useful as a check value function, it must function as a test for equality between

keys, and there may be a few peculiar circumstances where this is dangerous, and

check values should not be used at all. Take for example a situation where a large

random key space is populated with only a comparatively small number of keys (for

example if 3DES keys were derived from encryption of a PAN with a known key).

As there is not a vast number of PANs, all PANs could be tried, and their check

values compared with those of the encrypted derived keys. In these circumstances,

supporting calculation of a check value on the keys would not be prudent.

92

7.3 An Abundance of Attacks

This section describes the concrete attacks known on Security APIs, which are com-

prised of one or more of the building blocks described in the attacker’s toolkit. All

these attacks are concrete in the sense that the API on which they operate was suf-

ficiently well defined to be certain that it was vulnerable. In most cases the attacks

themselves have been implemented on real modules too, which lends further credi-

bility (though the level of correspondence between specification and implementation

must always be taken into account).

In addition to the attacks in this section, there are a few more general attacks, which

(for example) rely upon external factors such as poor design of procedural controls;

these are described in situ in discussions in other chapters of the thesis. The last

section (7.3.12) includes a list of attacks described elsewhere in the thesis, and also

briefly describes attacks newly developed by the author; these appear to be very

significant but cannot be adequately discussed until they are better understood.

7.3.1 VSM Compatibles – XOR to Null Key Attack

Anderson, 2000, [1]

The ‘XOR to Null Key’ attack was discovered by Anderson, and affected the Visa

Security Module and many compatible clones. Modern implementations of the VSM

API have been fixed.

The VSM’s primary method for importing top level keys is from clear components,

written by hand on pieces of paper, or printed into PIN mailer stationery. This

methodology was used for establishing Zone Control Master Keys (ZCMKs) and

also Terminal Master Keys (TMKs). The TMK establishment procedure consisted

of two commands – a privileged console command for generating a TMK component,

and an unrestricted command ‘IG’, which was used to combine key components. The

procedure for loading a key would thus be as follows:

(Key Switch Turned On)

HSM -> Printer : K1 (Generate Component)

HSM -> Host : { K1 }TMK

HSM -> Printer : K2 (Generate Component)

HSM -> Host : { K2 }TMK

(Key Switch Turned Off)

U -> HSM : { K1 }TMK , { K2 }TMK (Combine Key Parts)

HSM -> U : { K1 ⊕ K2 }TMK

93

The supervisor key switch is turned, which enables sensitive commands to be run

from the console – in particular, the generation of key components. Each security

officer then retrieves her key component mailer from the printer. Once the com-

ponents have been entered, supervisor state is cancelled, and a program is run on

the host which calls the IG command to combine the components and form the

final TMK. This procedure was followed for years before the retrospectively simple

attack was spotted: the key components are combined using XOR, so if the same

component is combined with itself, a key of all zeroes will necessarily result.

U -> HSM : { K1 }TMK , { K1 }TMK (Combine Key Parts)

HSM -> U : { 0000000000000000 }TMK

Once there is a known TMK in the system, other transactions allow the encryption

of other TMKs, or even PIN master keys under this key. A complete compromise

results.

The VSM and its successors were ‘fixed’ by making the IG command a privileged

transaction.

7.3.2 VSM Compatibles – A Key Separation Attack

Bond, 2000, [8]

The amalgamation of the TMK and PIN types in the VSM design is a weakness that

can be exploited many ways. One possible attack is to enter an account number

as a TC key, and then translate this to encryption under a PIN key. The command

responsible is designed to allow TC keys to be encrypted with a TMK for transfer to

an ATM, but because TMKs and PIN keys share the same type, the TC key can also be

encrypted under a PIN key in the same way. This attack is very simple and effective,

but is perhaps difficult to spot because the result of encryption with a PIN key is a

sensitive value, and it is counterintuitive to imagine an encrypted value as sensitive

when performing an analysis. Choosing a target account number PAN, the attack

can be followed on the type transition diagram in figure 7.7, moving from (CLEAR)

to TC (1), and finally to TMK_I (2).

(1) User -> HSM : PAN

HSM -> User : { PAN }TC

(2) User -> HSM : { PAN }TC , { PMK1 }TMK

HSM -> User : { PAN }PMK1

94

Figure 7.7: Type diagram for VSM with attack path highlighted

7.3.3 VSM Compatibles – Meet-in-the-Middle Attack

Bond, 2000, [8]

The meet-in-the-middle attack can be used to compromise eight out of the nine types

used by the VSM. As is typical of monotonic APIs, the VSM does not impose limits

or special authorisation requirements for key generation, so it is easy to populate

all the types with large numbers of keys. Furthermore, it cannot properly impose

restrictions on key generation because of the ‘key conjuring’ attack (section 7.2.3)

which works with many HSMs which store keys externally.

The target type should be populated with at least 216 keys, and a test vector en-

crypted under each. In the VSM, the dedicated ‘encrypt test vector’ command

narrowly escapes compromising all type because the default test vector (which is

0123456789ABCDEF) does not have the correct parity to be accepted as a key. In-

stead, the facility to input a chosen terminal key (CLEAR −→ TC in figure 7.7) can

be used to create the test vectors. The final step of the attack is to perform the 240

brute force search offline.

The obvious types to attack are the PIN/TMK and WK types. Once a single PIN/TMK

key has been discovered, all the rest can be translated to type TMK_I, encrypted

under the compromised TMK. The attacker then decrypts these keys offline (e.g

using a home PC). Compromise of a single Working Key (WK) allows all trial PINs

entered by customers to be decrypted by translating them from encryption under

their original WK to encryption under the compromised one (this command is shown

by the looping arrow on WK_I in figure 7.7).

95

7.3.4 4758 CCA – Key Import Attack

Bond, 2000, [8]

One of the simplest attacks on the 4758 is to perform an unauthorised type cast

using IBM’s ‘pre-exclusive-or’ type casting method [16]. A typical case would be

to import a PIN derivation key as a data key, so standard data ciphering commands

could be used to calculate PIN numbers, or to import a KEK as a DATA key, to allow

eavesdropping on future transmissions. The Key_Import command requires a KEK

with permission to import (an IMPORTER), and the encrypted key to import. The

attacker must have the necessary authorisation in his access control list to import

to the destination type, but the original key can have any type. Nevertheless, with

this attack, all information shared by another HSM is open to abuse. More subtle

type changes are possible, such as re-typing the right half of a 3DES key as a left

half.

A related key set must first be generated (1). The Key_Part_Import command acts

to XOR together a chosen value with an encrypted key. If a dual control policy

prevents the attacker from access to an initial key part, one can always be con-

jured (section 7.2.3). The chosen difference between keys is set to the difference

between the existing and desired control vectors. Normal use of the Key_Import

command would import KEY as having the old_CV control vector. However, the

identity (KEK1⊕old_CV) = (KEK2⊕new_CV) means that claiming that KEY was pro-

tected with KEK2, and having type new_CV will cause the HSM to retrieve KEY

correctly (3), but bind in the new type new_CV.

Related Key Set (1) KEK1 = KORIG

KEK2 = KORIG ⊕ (old_CV⊕ new_CV)

Received Key (2) EKEK1⊕old_CV(KEY) , old_CV

Import Process (3) DKEK2⊕new_CV(EKEK1⊕old_CV(PKEY)) = PKEY

Of course, a successful implementation requires circumvention of the bank’s proce-

dural controls, and the attacker’s ability to tamper with his own key part. IBM’s

advice is to take measures to prevent an attacker obtaining the necessary related

keys. Optimal configuration of the access control system can indeed avoid the attack,

but the onus is on banks to have tight procedural controls over key part assembly,

with no detail in the manual as to what these controls should be. The manual will

be fixed [23], but continuing to use XOR will make creating related key sets very

easy. A long-term solution is to change the control vector binding method to have

a one-way property, such that the required key difference to change between types

cannot be calculated – keys and their type information cannot be unbound.

96

7.3.5 4758 CCA – Import/Export Loop Attack

Bond, 2000, [8]

The limitation of the key import attack described in 7.3.4 is that it only applies to

keys sent from other HSMs, because they are the only ones that can be imported.

The Import/Export Loop attack builds upon the Key Import attack by demonstrat-

ing how to export keys from the HSM, so their types can be converted as they are

re-imported.

The simplest Import/Export loop would have the same key present as both an

importer and an exporter. However, in order to achieve the type conversion, there

must be a difference of (old_CV⊕new_CV) between the two keys. Generate a related

key set (1), starting from a conjured key part if necessary. Now conjure a new

key part KEKP, by repeated trial of key imports using IMPORTER1, and claiming

type importer_CV, resulting in (2). Now import with IMPORTER2, claiming type

exporter_CV, the type changes on import as before (3).

(1) IMPORTER1 = RAND

IMPORTER2 = RAND⊕ (importer_CV⊕ exporter_CV)

(2) EIMPORTER1⊕importer_CV(KEKP)

(3) DIMPORTER2⊕exporter_CV(EIMPORTER1⊕importer_CV(KEKP)) = KEKP

(4) EXPORT_CONVERT = KEKP

(5) IMPORT_CONVERT1 = KEKP⊕ (source1_CV⊕ dest1_CV)

· · ·
IMPORT_CONVERTn = KEKP⊕ (source1_CV⊕ destn_CV)

Now use Key_Part_Import to generate a related key set (5) which has chosen dif-

ferences required for all type conversions you need to make. Any key with export

permissions can now be exported with the exporter from the set (4), and re-imported

as a new type using the appropriate importer key from the related key set (5). IBM

recommends audit for same key used as both importer and exporter [16], but this

attack employs a relationship between keys known only to the attacker, so it is

difficult to see how such an audit could succeed.

97

7.3.6 4758 CCA – 3DES Key Binding Attack

Bond, 2000, [8]

The 4758 CCA does not properly bind together the halves of its 3DES keys. Each

half has a type associated, distinguishing between left halves, right halves, and single

DES keys. However, for a given 3DES key, the type system does not specifically

associate the left and right halves as members of that instance. The ‘meet-in-the-

middle’ technique can thus be successively applied to discover the halves of a 3DES

key one at a time. This attack allows all keys to be extracted, including ones which

do not have export permissions, so long as a known test vector can be encrypted.

4758 key generation gives the option to generate replicate 3DES keys. These are

3DES keys with both halves having the same value. The attacker generates a large

number of replicate keys sharing the same type as the target key. A meet-in-the-

middle attack is then used to discover the value of two of the replicate keys (a 241

search). The halves of the two replicate keys can then be exchanged to make two

3DES keys with differing halves. Strangely, the 4758 type system permits distinction

between true 3DES keys and replicate 3DES keys, but the manual states that this

feature is not implemented, and all share the generic 3DES key type. Now that a

known 3DES key has been acquired, the conclusion of the attack is simple; let the

key be an exporter key, and export all keys using it.

If the attacker does not have the CCA role-based access control (RBAC) permissions

to generate replicate keys, he must generate single length DES keys, and change their

left half control vector to ‘left half of a 3DES key’. This type casting can be achieved

using the Key Import attack (section 7.3.4). If the value of the imported key cannot

be found beforehand, 216 keys should be imported as ‘single DES data keys’, used

to encrypt a test vector, and an offline 241 search should find one. Re-import the

unknown key as a ‘left half of a 3DES key’. Generate 216 3DES keys, and swap in

the known left half with all of them. A 240 search should yield one of them, thus

giving you a known 3DES key.

If the attacker cannot easily encrypt a known test pattern under the target key type

(as is usually the case for KEKs), he must bootstrap upwards by first discovering a

3DES key of a type under which he has permissions to encrypt a known test vector.

This can then be used as the test vector for the higher level key, using a Key_Export

to perform the encryption.

A given non-exportable key can also be extracted by making two new versions of it,

one with the left half swapped for a known key, and likewise for the right half. A 256

search would yield the key (looking for both versions in the same pass through the

key space). A distributed effort or special hardware would be required to get results

within a few days, but such a key would be a valuable long term key, justifying

the expense. A brute force effort in software would be capable of searching for all

non-exportable keys in the same pass, further justifying the expense.

98

7.3.7 4758 CCA – Key Part Import Descrack Attack

Clayton & Bond, 2001, [13]

A number of attack instances in this section show techniques from the attack toolkit

applied to the 4758 CCA revealing a vulnerability. However, whilst existence of the

vulnerabilities is difficult to deny, it is debatable whether the particular configu-

rations of the CCA RBAC system typically used will prevent a full and complete

extraction of key material. This attack’s goal is to extract a 3DES key with export

permissions in the clear, using as few access permissions as possible – with the aim

of staying with a realistic threat model. The explanation here is primarily taken

from “Experience Using a Low-Cost FPGA Design to Crack DES Keys” [13], but

focusses on the attack methodology, rather than the DES cracker design.

Performing the Attack on the HSM

A normal attack on the CCA using the meet-in-the-middle tool (section 7.2.2) and

the related key tool (section 7.2.4) is fairly straightforward to derive, and consists

of three stages, shown in figure 7.8 and described below:

(1) Test Pattern Generation: Discover a normal data encryption key to use as a test

pattern for attacking an exporter key. This is necessary because exporter keys are

only permitted to encrypt other keys, not chosen values. The method is to encrypt

a test pattern of binary zeroes using a set of randomly generated data keys, and

then to use the meet-in-the-middle attack to discover the value of one of these data

keys.

(2) Exporter Key Harvesting: Use the known data key from stage (1) as a test

pattern to generate a second set of test vectors for a meet-in-the-middle attack that

reveals two double-length replicate exporter keys (replicate keys have both halves the

same, thus acting like single DES keys). Once this stage is complete, the values of

two of the keys in the set will be known.

(3) Valuable Data Export: Retrieve the valuable key material (e.g. PIN derivation

keys). This requires a known double-length exporter key, as the CCA will not

export a 3DES key encrypted under a single DES exporter key, for obvious security

reasons. Here, the key-binding flaw in the CCA software is used to swap the halves

of two known replicate keys from stage (2) in order to make a double-length key

with unique halves. This full 3DES key can then be used for the export process.

However, the above approach is far from ideal because it requires multiple phases of

key cracking and illicit access to the HSM. In order to perform the attack in a single

access session, the second set of test vectors has to be generated immediately after

the first. However, it is not possible to know in advance which data key from the

set will be discovered by the search, in order to use it as a test pattern. Generating

a second set of test vectors for every possible data key would work in principle, but

99

Test Pattern 0

Set of Exporter Keys X(n)

Set of Test Vectors T(n)

MIMCRACK

Data Key A(?)

Set of Data Keys A(n)

TWO MIMCRACKS

Exporter Keys X(?) X(??)

ENCRYPT

Set of Test Vectors T(n)

EXPORT

Exported Valuable Key Material

EXPORT

SWAP HALVES

DECRYPT

Valuable Key Material

Bank

Bank

Bank

Home

Home

Home

Valuable Key Material

Figure 7.8: Standard implementation of attack on 4758 CCA

100

Data Key A^B

Data Key Part A

Set of Data KeysTest Pattern 0

Set of Test Vectors

ENCRYPT

Exporter Key X^Y

Exporter Key Part X

Set of Exporter Keys

Set of Test Vectors

EXPORT

Exported Valuable Key Material

EXPORT

MIMCRACK

MIMCRACK

Data Key Part A

Data Key A^B

Exporter Key Part X

Exporter X^Y

DECRYPT

Valuable Key Material

Data Key Part B Exporter Key Part YSet of Data Key Parts

XOR XOR XOR

Set of Exporter Key Parts

XOR

Bank

Home

F
igu

re
7.9:

O
p

tim
ised

im
p

lem
en

tation
of

attack
on

4758
C

C
A

101

the number of operations the HSM would have to perform would be exponentially

increased, and at the maximum transaction rate for a 4758 (roughly 300 per second),

collecting this data set would take ten days of unauthorised access.

So the first stage of the online attack had to yield the value of a particular data

key that was chosen in advance, which could then be used as the test pattern for

the second stage. The solution is shown in figure 7.9. It is first necessary to create

a related key set using the Key Part Import command. From the discovery of any

single key, the values of all of the rest can be calculated. This related key set is

made by generating an unknown data key part and XORing it with 214 different

known values (for instance, the integers 0 . . . 16383). Any one of the keys can then

immediately be used for the second stage of the attack, even though its actual value

will only be discovered later on.

The second stage is to export this single data key under a set of double-length

replicate exporter keys and to use a meet-in-the-middle attack on the results. Two

keys need to be discovered so that their halves can be swapped to create a non-

replicate exporter key. Once again the same problem arises – it is impossible to

tell in advance which two keys will be discovered, and so the valuable key material

cannot be exported until after the cracking was complete. Generating a set of related

exporter keys again solves the problem. Discovering just one replicate key now gives

access to the entire set. Thus a double-length exporter with unique halves can be

produced prior to the cracking activity by swapping the halves of any two of the

related keys.

Implementation of this second stage of the process reveals an interesting and well-

hidden flaw in the Key Part Import command. The concept of binding flaws has

already been identified in the encrypted key tokens (see section 7.3.6), but it is also

present in Key Part Import: it is possible to subvert the creation of a double-length

replicate key so as to create a uniquely halved double-length key by the simple action

of XORing in a new part with differing halves. This second instance of the flaw was

discovered during the process of trying to implement the naive three stage attack

for real.

Finally, the new double-length exporter key made from the unknown replicate key

part from stage two can be used to export the valuable key material, as is visible in

figure 7.9. The attack retains the three conceptual stages, but there is no dependency

on the values of cracked keys during the period of access to the HSM. This allows

the data collection for all three stages to be run in a single session and the cracking

effort to be carried out in retrospect.

Cracking the DES Keys

A home PC can be used for the DES key cracking, and this might be typical of

the resources immediately available to a real-world attacker. However, experiments

102

performed when the attack was discovered showed that cracking a single key from

a set of 216 would take a typical 800 MHz machine about 20 days. It may not

be possible to increase the number of test vectors collected, as 216 is roughly the

maximum number of encrypted results that can be harvested during a “lunch-break-

long” period of access to the CCA software. “No questions asked” access to multiple

PCs in parallel is also a substantial risk, so a faster method is preferable to allow the

attack to complete before a bank’s audit procedures might spot the unauthorised

access to their HSM.

Given the benefits of implementing DES in hardware, and the flexibility and ease

of implementation associated with FPGAs, Altera’s “Excalibur” NIOS evaluation

board [40] was a promising candidate platform for implementing a DES cracker.

The NIOS evaluation board is an off-the-shelf, ready-to-run, no-soldering-required

system, and comes complete with all the tools necessary to develop complex systems.

Altera generously donated a board for free; in 2001 its retail price was US$995.

The basic idea of a brute force “DES cracker” is to try all possible keys in turn and

stop when one is found that will correctly decrypt a given value into its plaintext;

this is the sort of machine that was built by the EFF in 1998 [21]. To crack key

material with known test vectors, the cracker works the other way round; it takes

an initial plaintext value and encrypts it under incrementing key values until the

encrypted output matches one of the values being sought. The design implemented

runs at 33.33 MHz, testing one key per clock cycle. This is rather slow for cracking

DES keys – and it would take, with average luck, 34.6 years to crack a single key.

However, the attack method allows many keys to be attacked in parallel and because

they are all related it does not matter which one is discovered first.

The design was made capable of cracking up to 214 keys in parallel (i.e. it simul-

taneously checked against the results of encrypting the plaintext with 214 different

DES keys). The particular Excalibur board being used imposed the 16384 limita-

tion; if more memory had been available then the attack could have proceeded more

quickly. The actual comparison was done in parallel by creating a simple hash of

the encrypted values (by XORing together groups of 4 or 5 bits of the value) and

then looking in that memory location to determine if an exact match had occurred.

Clearly, this gives rise to the possibility that some of the encrypted values obtained

from the 4758 would need to be stored in identical memory locations. We just dis-

carded these clashes and collected rather more than 214 values to ensure that the

comparison memory would be reasonably full.

As already indicated, the attack requires two cracking runs, so one would hope to

complete it in just over 2 days. In practice, the various keys we searched for were

found in runs taking between 5 and 37 hours, which is well in accordance with

prediction.

103

Implementation Overview

The DES cracker was implemented on the Altera Excalibur NIOS Development

board [40], as seen in figure 7.10. This board contains an APEX EP20K200EFC484-

2X FPGA chip which contains 8320 Lookup Tables (LUTs) – equivalent to approxi-

mately 200000 logic gates. The FPGA was programmed with a DES cracking design

written in Verilog alongside of which, within the FPGA, was placed a 16-bit NIOS

processor, which is an Altera developed RISC design which is easy to integrate with

custom circuitry. The NIOS processor runs a simple program (written in GNU C

and loaded into some local RAM on the FPGA) which looks after a serial link. The

test vectors for the DES crack are loaded into the comparison memory via the serial

link, and when cracking results are obtained they are returned over the same link.

Although the NIOS could have been replaced by a purely hardware design, there

was a considerable saving in complexity and development time by being able to use

the pre-constructed building blocks of a processor, a UART and some interfacing

PIOs.

Figure 7.10: The NIOS Evaluation board running the DES cracker

The cracker can be seen in action on the logic analyser pictured in Fig. 7.11 below.

The regular signal on the third trace is the clock. The second signal down shows

a 32-bit match is occurring. This causes a STOP of the pipeline (top signal) and

access to an odd numbered address value (bottom signal). The other signals are

some of the data and address lines.

The full attack described in this paper was run on two occasions in 2001 at the full

rate of 33.33 MHz (approx. 225 keys/second). In both cases the expected running

104

Figure 7.11: The DES cracker actually running

time of 50 hours (based on average luck in locating a key) was comfortably beaten

and so it would have been possible to start using the PIN derivation keys well before

unauthorised access to the 4758 could have been detected.

Date Start Finish Duration Key value found

Aug 31 19:35 17:47 22 h 12 min #3E0C7010C60C9EE8

Sep 1 18:11 23:08 4 h 57 min #5E6696F6B4F28A3A

Oct 9 17:01 11:13 19 h 12 min #3EEA4C4CC78A460E

Oct 10 18:17 06:54 12 h 37 min #B357466EDF7C1C0B

The results of this attack were communicated to IBM. In early November 2001

they issued a warning to CCA users [27] cautioning them against enabling various

functionality that the attacks depended upon. In February 2002 they issued a new

version of the CCA software [28] with some substantial amendments that addressed

many issues raised by this attack.

Interestingly, the specification-level faults that were exploited in this attack have

turned out to be just part of the story. Although much of the effort was devoted into

reducing the effective strength of the CCA’s 3DES implementation to that of single

DES, IBM’s analysis of the attack uncovered an implementation-level fault that

made this whole stage unnecessary [29]. The CCA code was failing to prevent export

of a double-length key under a double-length replicate key, despite the specifications

stating that this would not be allowed.

105

7.3.8 4758 CCA – Weak Key Timing Attack

Bond & Clayton, 2001, Unpublished

The FIPS standards for DES advise the avoidance of using one of the 64 weak DES

keys, and although IBM’s CCA itself is not FIPS 140-1 validated, it observes precau-

tions to avoid accidentally selecting one of these keys for a master key at random.

The CCA master key is a three-key 3DES key, and it is checked by comparing each

third with a table of weak keys stored in memory. The comparison is simply a call

to the C memcmp command, and thus is a byte by byte comparison with the target

data. The memcmp call will return when the first byte fails to match. There is thus

an inherent timing characteristic created by the comparison, dependent upon the

number of initial bytes of the master key which match weak key bytes.

The CCA firmware package that is loaded into the 4758 is only signed, not en-

crypted. It was disassembled and the comparison code located and confirmed to be

susceptible. However, the task remained of performing an accurate timing measure-

ment. The device driver DLL which governed interaction with the 4758 over the

PCI bus was modified to sit in a tight loop waiting for a response over the bus, and

count clock cycles. On a fast machine (the author used a 1.6GHz machine), this was

easily enough accuracy to measure single instructions on the 100MHz 80486 within

the 4758.

However, despite promising practical work, the attack remained theoretical, as the

weak key testing was not done for normal key generation (only for master key

generation which is a rare event, usually performed only when the 4758 is connected

to a trusted host), and a large amount of noise was generated by the PCI bus

buffering, which was never successfully modelled and compensated for. However,

the principle of a timing attack on DES weak key checking remains, and it has

recently become apparent that other FIPS approved devices are checking all DES

keys generated against the weak key list in a similar manner. In particular, the

Chrysalis Luna CA3 token seems to be vulnerable. It is hoped that this timing

attack will be successfully implemented against a real device shortly. It will be ironic

if it turns out that FIPS advice to avoid weak keys has (inadvertently) caused more

severe attacks than the phenomenally rare pathological cases it protects against.

7.3.9 4758 CCA – Check Value Attack

Clulow, 2002, Unpublished

The 4758 CCA has a careless implementation fault in the Key_Test command. The

command is a multi-purpose check value calculation command, which aims to be

interoperable with equipment supporting all sorts of different check values of types

and different lengths. It should be possible to calculate the check value of any key in

the system – hence there are few restrictions on the possible control vectors supplied

106

to the command. It seems that the implementers recognised this, and decided that

no control vector checking was necessary at all!

Whilst it is meaningful to calculate a check value for any type of key, it should not be

possible to calculate check values for subcomponents of 3DES keys, nor present two

key halves with completely different control vectors. One simple result is that the

left half of a 3DES key can be supplied twice, and the check value retrieved as a test

pattern on what is then effectively a single length DES key. The meet-in-the-middle

attack can then be used to establish a known DES-key in the system. A normal run

of the Key_Test command is shown followed by the attack in figure 7.12.

U -> C : { KL }Km/left , { KR }Km/right , left , right

C -> U : { 0000000000000000 }KL|KR

U -> C : { KL }Km/left , { KL }Km/left , left , left

C -> U : { 0000000000000000 }KL|KL

Figure 7.12: Normal and attack runs of Key Test

The resulting attack is thus a combination of an implementation level fault and a

specification level fault (an API attack). Composite attacks of this nature are very

hard to plan for and eliminate from designs.

7.3.10 VSM Compatibles – Decimalisation Table Attack

Bond & Zielinski, Clulow, 2002, [10], [15]

The decimalisation table attack affects financial Security APIs supporting IBM’s

PIN derivation method. It is a radical extension of a crude method of attack that

was known about for some time, where a corrupt bank programmer writes a program

that tries all possible PINs for a particular account. With average luck such an attack

can discover a PIN with about 5000 transactions. A typical HSM can check maybe

60 trial PINs per second in addition to its normal load, thus a corrupt employee

executing the program during a 30 minute lunch break could only make off with

about 25 PINs.

The first ATMs to use decimalisation tables in their PIN generation method were

IBM’s 3624 series ATMs, introduced widely in the US in the late seventies. This

method calculates the customer’s original PIN by encrypting the account number

printed on the front of the customer’s card with a secret DES key called a “PIN

derivation key”. The resulting ciphertext is converted into hexadecimal, and the

first four digits taken. Each digit has a range of ‘0’-‘F’. Hexadecimal PINs would

have confused customers, as well as making keypads unnecessarily complex, so in

order to convert this value into a decimal PIN , a “decimalisation table” is used,

107

which is a many-to-one mapping between hexadecimal digits and decimal digits.

The left decimalisation table in figure 7.13 is typical.

0123456789ABCDEF 0123456789ABCDEF

0123456789012345 0000000100000000

Figure 7.13: Normal and attack decimalisation tables

This table is supplied unprotected as an input to PIN verification commands in many

HSMs, so an arbitrary table can be provided along with the PAN and a trial PIN. But

by manipulating the contents of the table it becomes possible to learn much more

about the value of the PIN than simply excluding a single combination. For example,

if the right hand table is used, a match with a trial pin of 0000 will confirm that

the PIN does not contain the number 7, thus eliminating over 10% of the possible

combinations. This section first discusses methods of obtaining the necessary chosen

encrypted PINs, then presents a simple scheme that can derive most PINs in around

24 guesses. Next it presents an adaptive scheme which maximises the amount of

information learned from each guess, and takes an average of 15 guesses. Finally,

a third scheme is presented which demonstrates that the attack is still viable even

when the attacker cannot control the guess against which the PIN is matched.

Obtaining chosen encrypted trial PINs

Some financial APIs permit clear entry of trial PINs from the host software. For

instance, this functionality may be required to input random PINs when generating

PIN blocks for schemes that do not use decimalisation tables. The CCA has a

command called Clear_PIN_Encrypt, which will prepare an encrypted_PIN_block

from the chosen PIN. It should be noted that enabling this command carries other

risks as well as permitting our attacks. If the PINs do not have randomised padding

added before they are encrypted, an attacker could make a table of known trial

encrypted PINs, compare each arriving encrypted PIN against this list, and thus

easily determine its value. This is known as a code book attack. If it is still necessary

to enable clear PIN entry in the absence of randomised padding, some systems can

enforce that the clear PINs are only encrypted under a key for transit to another

bank – in which case the attacker cannot use these guesses as inputs to the local

verification command.

So, under the assumption that clear PIN entry is not available to the attacker, his

second option is to enter the required PIN guesses at a genuine ATM, and intercept

the encrypted_PIN_block corresponding to each guess as it arrives at the bank.

Our adaptive decimalisation table attack only requires five different trial PINs –

0000 , 0001 ,0010 , 0100 , 1000. However the attacker might only be able to

acquire encrypted PINs under a block format such as ISO-0, where the account

108

number is embedded within the block. This would require him to manually input

the five trial PINs at an ATM for each account that could be attacked – a huge

undertaking which totally defeats the strategy.

A third course of action for the attacker is to make use of the PIN offset capability

to convert a single known PIN into the required guesses. This known PIN might be

discovered by brute force guessing, or simply opening an account at that bank.

Despite all these options for obtaining encrypted trial PINs it might be argued

that the decimalisation table attack is not exploitable unless it can be performed

without a single known trial PIN. To address these concerns, a third algorithm was

created, which is of equivalent speed to the others, and does not require any known

or chosen trial PINs. This algorithm has no technical drawbacks – but it is slightly

more complex to explain.

We now describe three implementations based upon this weakness. First, we present

a 2-stage simple static scheme which needs only about 24 guesses on average. The

shortcoming of this method is that it needs almost twice as many guesses in the

worst case. We show how to overcome this difficulty by employing an adaptive

approach and reduce the number of necessary guesses to 24. Finally, we present an

algorithm which uses PIN offsets to deduce a PIN from a single correct encrypted

guess, as is typically supplied by the customer from an ATM.

Initial Scheme

The initial scheme consists of two stages. The first stage determines which digits

are present in the PIN. The second stage consists in trying all the possible PINs

composed of those digits.

Let Dorig be the original decimalisation table. For a given digit i, consider a binary

decimalisation table Di with the following property. The table Di has 1 at position

x if and only if Dorig has the digit i at that position. In other words,

Di[x] =
1 if Dorig[x] = i,

0 otherwise.

For example, for a standard table Dorig = 0123 4567 8901 2345, the value of D3 is

0001 0000 0000 0100.

In the first phase, for each digit i, we check the original PIN against the decimali-

sation table Di with a trial PIN of 0000. It is easy to see that the test fails exactly

when the original PIN contains the digit i. Thus, using only at most 10 guesses, we

have determined all the digits that constitute the original PIN.

In the second stage we try every possible combination of those digits. The number

of combinations depends on how many different digits the PIN contains. The table

below gives the details:

109

Digits Possibilities

A AAAA(1)

AB ABBB(4), AABB(6), AAAB(4)

ABC AABC(12), ABBC(12), ABCC(12)

ABCD ABCD(24)

The table shows that the second stage needs at most 36 guesses (when the original

PIN contains 3 different digits), which gives 46 guesses in total. The expected

number of guesses is about 23.5.

Adaptive Scheme

Given that the PIN verification command returns a single bit yes/no answer, it is

logical to represent the process of cracking a PIN with a binary search tree. Each

node v contains a guess, i.e., a decimalisation table Dv and a PIN pv. We start

at the root node and go down the tree along the path that is determined by the

results of our guesses. Let porig be the original PIN. At each node, we check whether

Dv(porig) = pv. Then, we move to the right child if it is true and to the left child

otherwise.

Each node v in the tree can be associated with a list Pv of original PINs such that

p ∈ Pv if and only if v is reached in the process described in the previous paragraph

if we take p as the original PIN. In particular, the list associated with the root node

contains all possible pins and the list of each leaf contains only one element: an

original PIN porig.

Consider the initial scheme described in the previous section as an example. To give

a simplified example, imagine an original PIN consists of two binary digits and a

correspondingly trivial decimalisation table, mapping 0→ 0 and 1→ 1. Figure 7.14

depicts the search tree for these settings.

The main drawback of the initial scheme is that the number of required guesses

depends strongly on the original PIN porig. For example, the method needs only 9

guesses for porig = 9999 (because after ascertaining that digit 0–8 do not occur in

porig this is the only possibility), but there are cases where 46 guesses are required.

As a result, the search tree is quite unbalanced and thus not optimal.

One method of producing a perfect search tree (i.e., the tree that requires the small-

est possible number of guesses in the worst case) is to consider all possible search

trees and choose the best one. This approach is, however, prohibitively inefficient

because of its exponential time complexity with respect to the number of possible

PINs and decimalisation tables.

It turns out that not much is lost when we replace the exhaustive search with a

simple heuristics. We will choose the values of Dv and pv for each node v in the

following manner. Let Pv be the list associated with node v. Then, we look at all

110

D10(p)
?
= 00

p = 11

yes

D01(p)
?
= 10

no

p = 10

yes

D01(p)
?
= 01

no

p = 01

yes

p = 00

no

Figure 7.14: The search tree for the initial scheme. Dxy denotes the decimalisation

table that maps 0→ x and 1→ y.

possible pairs of Dv and pv and pick the one for which the probability of Dv(p) = pv
for p ∈ Pv is as close to 1

2
as possible. This ensures that the left and right subtrees

are approximately of the same size so the whole tree should be quite balanced.

This scheme can be further improved using the following observation. Recall that

the original PIN porig is a 4-digit hexadecimal number. However, we do not need to

determine it exactly; all we need is to learn the value of p = Dorig(porig). For example,

we do not need to be able to distinguish between 012D and ABC3 because for both

of them p = 0123. It can be easily shown that we can build the search tree that is

based on the value of p instead of porig provided that the tables Dv do not distinguish

between 0 and A, 1 and B and so on. In general, we require each Dv to satisfy the

following property: for any pair of hexadecimal digits x, y: Dorig[x] = Dorig[y] must

imply Dv[x] = Dv[y]. This property is not difficult to satisfy and in reward we can

reduce the number of possible PINs from 164 = 65 536 to 104 = 10 000. Figure 7.15

shows a sample run of the algorithm for the original PIN porig = 3491.

PIN Offset Adaptive Scheme

When the attacker does not know any encrypted trial PINs, and cannot encrypt

his own guesses, he can still succeed by manipulating the offset parameter used to

compensate for customer PIN change. The scheme has the same two stages as the

initial scheme, so our first task is to determine the digits present in the PIN.

Assume that an encrypted PIN block containing the correct PIN for the account

has been intercepted (the vast majority of arriving encrypted PIN blocks will satisfy

this criterion), and for simplicity that the account holder has not changed his PIN

so the correct offset is 0000. Using the following set of decimalisation tables, the

attacker can determine which digits are present in the correct PIN.

111

No # Poss. pins Decimalisation table Dv Trial pin pv Dv(porig) pv
?
= Dv(porig)

1 10000 1000 0010 0010 0000 0000 0000 yes

2 4096 0100 0000 0001 0000 0000 1000 no

3 1695 0111 1100 0001 1111 1111 1011 no

4 1326 0000 0001 0000 0000 0000 0000 yes

5 736 0000 0000 1000 0000 0000 0000 yes

6 302 0010 0000 0000 1000 0000 0000 yes

7 194 0001 0000 0000 0100 0000 0001 no

8 84 0000 1100 0000 0011 0000 0010 no

9 48 0000 1000 0000 0010 0000 0010 no

10 24 0100 0000 0001 0000 1000 1000 yes

11 6 0001 0000 0000 0100 0100 0001 no

12 4 0001 0000 0000 0100 0010 0001 no

13 2 0000 1000 0000 0010 0100 0010 no

Figure 7.15: Sample output from adaptive test program

Guess Guessed Cust. Cust. Guess Decimalised Verify

Offset Decimalisation Table Guess +Guess Offset Original PIN Result

0001 0123456799012345 1583 1584 1593 no

0010 0123456799012345 1583 1593 1593 yes

0100 0123456799012345 1583 1683 1593 no

1000 0123456799012345 1583 2583 1593 no

Figure 7.16: Example of using offsets to distinguish between digits

Di[x] =
Dorig[x] + 1 if Dorig[x] = i,

Dorig[x] otherwise.

For example, for the table Dorig = 0123 4567 8901 2345, the value of the table D3 is

0124 4567 8901 2445. He supplies the correct encrypted PIN block and the correct

offset each time.

As with the initial scheme, the second phase determines the positions of the digits

present in the PIN, and is again dependent upon the number of repeated digits in

the original PIN. Consider the common case where all the PIN digits are different,

for example 1583. We can try to determine the position of the single 8 digit by

applying an offset to different digits and checking for a match.

Each different guessed offset maps the customer’s correct guess to a new PIN which

may or may not match the original PIN after decimalisation with the modified table.

This procedure is repeated until the position of all digits is known. Cases with all

digits different will require at most 6 transactions to determine all the position data.

Three different digits will need a maximum of 9 trials, two digits different 13 trials,

112

and if all the digits are the same no trials are required as there are no permutations.

When the parts of the scheme are assembled, 16.5 guesses are required on average

to determine a given PIN.

Results

We first tested the adaptive algorithm exhaustively on all possible PINs. The distri-

bution in figure 7.17 was obtained. The worst case has been reduced from 45 guesses

to 24 guesses, and the mode has fallen from 24 to 15 guesses. We then implemented

the attacks on the CCA (version 2.41, for the IBM 4758), and successfully extracted

PINs generated using the IBM 3624 method. The attack has also been checked

against APIs for the Thales RG7000 and the HP-Atalla NSP.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Attempts

N
um

be
r

of
 P

IN
s

Figure 7.17: Distribution of guesses required using adaptive algorithm

Prevention

It is easy to perform a check upon the validity of the decimalisation table. Several

PIN verification methods that use decimalisation tables require that the table be

0123456789012345 for the algorithm to function correctly, and in these cases en-

forcing this requirement will considerably improve security. However, the author has

recently observed that skewed distribution of PINs will continue to cause a problem

– see section 7.3.12 for details. Continuing to support proprietary decimalisation

113

tables in a generic way will be hard to do. A checking procedure that ensures a

mapping of the input combinations to the maximum number of possible output

combinations will protect against the naive implementation of the attack, but not

against the variant which exploits PIN offsets and uses only minor modifications

to the genuine decimalisation table. A better option is for the decimalisation table

input to be cryptographically protected so that only authorised tables can be used.

The short-term alternative to the measures above is to use more advanced intrusion

detection, and it seems that the long term message is clear: continuing to support

decimalisation tables is not a robust approach to PIN verification. Unskewed random

generation of PINs is really the only sensible approach.

7.3.11 Prism TSM200 – Master Key Attack

Bond, 2001, Unpublished

In the 1990s, South African HSM manufacturer Prism produced a version of its

TSM200 with a transaction set specially customised for use in the prepayment elec-

tricity meter system developed by South African provider Eskom. Electricity meters

included a tamper-resistant device which accepts “tokens” (simply 10 numeric digit

strings) that increase its available credit. Tokens could be bought from a machine

at a local newsagent: the function of Prism’s module was to control the issue of to-

kens, and prevent the newsagent from cheating on the electricity supplier. If anyone

could steal the keys for token manufacture, they could charge to dispense tokens

themselves, or simply cause mischief by dispensing free electricity. The project is

described more fully in [5].

A picture of the TSM200 is shown in section 6.3.6 of the Hardware Security Module

chapter. The Prism API for the device is unusual compared with others, as it is non-

monotonic (see section 7.1.4 for a discussion of monotonicity). The device uses only

symmetric DES keys; these are stored within the device in 100 different registers

available for the task. 3DES is supported by storing two keys in adjacent registers.

Communications & Communications Client

The author was given access to a TRSM for testing purposes, which by chance came

with a live master key. This gave the opportunity for a useful challenge – could an

API attack be performed to extract this key with only a single module, and with no

second attempt should the attack fail and somehow corrupt the module state?

The HSM communicates with the outside world via a ‘virtual serial port’ – a single

address mapped in memory through which commands can be sent and responses

received. The transactions and data are encoded in ASCII so, given enough patience,

a human can communicate directly with the module. Commands consisted of two

letters indicating the general type of command, a question mark symbol indicating

114

it was a query, and then two letters for the command name. For example, the

commands to initialise register 86 and put in the clear value of a key is as follows:

Security Officer 1 -> HSM : SM?IK 86 08F8E3973E3BDF26

HSM -> Security Officer 1 : SM!IK 00 91BA78B3F2901201

The module acknowledges that command by repeating the name with the question

mark replaced by an exclamation mark: SM stands for ‘Security Module’, and IK

for ‘Initialise Key (Component)’. The two digits following are a response code ‘00’,

indicating success, followed by the check value of the new contents of the register.

Some commands such as the one above affect the state of internal registers, and due

to dependencies between registers specified by the API, modification of one register

could trigger erasure of others. A communications client was thus designed that

had active and passive modes. Passive mode would only permit commands to be

sent which did not affect the internal state of the module, active would allow all

commands.

In order to safely develop macros that repeatedly executed commands constituting

an attack, the communications client logged all commands and responses, and had

an offline mode where the sequence of automatically generated commands could be

inspected before actually risking sending them. These features were instrumental in

developing the implementation of the attack without damaging the HSM internal

state.

The Attack

An attack on the API was rapidly spotted after experimenting with the API. It ex-

ploited three building blocks from the attacker’s toolkit – meet-in-the-middle attack

on DES, a key binding failure, and poor check values – as well as a further API

design error specific to the TSM200.

In order to ascertain which registers contain which keys, the API provides a SM?XX

command, which returns a check value. The check value is the complete result of

encrypting a string of binary zeroes with the DES key in that register. In fact, every

command that modified the state of a register automatically returned a check value

on the new contents of the register.

This 64-bit check value constituted a perfect test vector for a meet-in-the-middle

attack. However, there were some problems: keys generated at random were not

returned in encrypted form, but stored internally in a register. So if a large set of

keys were to be generated, each had to be exported under some higher level key

which could not be attacked, and it would be possible to discover the value of a

key using the meet-in-the-middle attack that was marked internally as unknown.

This was a definite flaw, but did not in itself constitute an attack on the deployed

115

Security Officer 1 -> HSM : SM?IK 86 08F8E3973E3BDF26

HSM -> Security Officer 1 : SM!IK 00 91BA78B3F2901201

Security Officer 1 -> HSM : SM?IK 87 E92F67BFEADF91D9

HSM -> Security Officer 1 : SM!IK 00 0D7604EBA10AC7F3

Security Officer 2 -> HSM : SM?AK 86 FD29DA10029726DC

HSM -> Security Officer 2 : SM!AK 00 EDB2812D704CDC34

Security Officer 2 -> HSM : SM?AK 87 48CCA975F4B2C8A5

HSM -> Security Officer 2 : SM!AK 00 0B52ED2705DDF0E4

Figure 7.18: Normal initialisation of master key by security officers.

system: all keys stored in a hierarchy recorded their parent key, and could only

be re-exported under that key. Thus if a new exporter key were generated and

discovered using this attack, it could not be used for exporting any of the existing

target keys in the device. This design feature was particularly elegant.

However, the key part loading procedure offered scope for attack as well as random

generation of keys. Figure 7.18 shows the normal use of the SM?IK and SM?AK

commands by two security officers, who consecutively enter their key parts.

There was no flag to mark a key built from components as completed – any user

could continue to XOR in keyparts with existing keys ad infinitum. So to perform a

meet-in-the-middle attack, a related key set could be used, based around an existing

unknown key, rather than generating a totally random set of keys. There was just

one key created from components under which the target keys were stored – the

master key (by convention kept in registers 86 and 87). The key binding failure

then came into play: the check values were returned on each half of the 3DES key

independently, so this meant that it could be attacked with only twice the effort of

a DES key (i.e. two meet-in-the-middle searches).

A final crucial hurdle remained – changing the master key caused a rippling erasure of

all child keys, thereby destroying the token generation keys which were the ultimate

target. Fortunately the answer was already there in the earlier reasoning about

attack strategy – export all keys in the hierarchy before attacking the master key,

and re-import them once it had been discovered.

Completing the Attack

The test vectors were harvested using a small loop operation, which XORed a new

constant in with the master key half each time, and then recorded the check value

returned. At the end of the loop the master key was restored to its original value.

116

For I= 0000000000000001 to 000000000001FFFF

{

SM?AK 87 (I xor (I-1))

SM!AK 00 (result)

store the pair (I, result)

}

Finally, the key hierarchy exported before the master key was attacked was de-

crypted offline using a home PC. The author successfully implemented the attack

as described in 2001; Prism was informed and they later modified their API to limit

the number of components which could be combined into a register.

7.3.12 Other Attacks

Attacks described elsewhere

• Dual Security Officer Attack – see section 8.4.1

• M-of-N Security Officer Attack – see section 8.4.2

Recent Attacks not fully described

These new attacks have been discovered so recently that they cannot be fully in-

corporated in this thesis. Brief summaries suitable for those familiar with financial

Security APIs have been included; academic publication is pending.

• PVV Clash Attack – VISA PVV values are calculated by encrypting the

transaction security value, and then truncating and decimalising the result.

There is a good probability that several different transaction security values

will produce the same PVV as a result – thus there may be several PINs that

could be entered at an ATM that will be authorised correctly. An insider could

use PVV generation transactions to find the rarer accounts which may have

ten or more correct PINS.

• ISO-0 Collision Attack – Some PIN generation commands return the gen-

erated PIN as an encrypted ISO-0 PIN block, in order to send off to mass PIN

mailer printing sites. By using these generation commands and calculating all

the PINs for the same account by stepping through the offsets, one can build

up a full set of encrypted PIN blocks for a particular PAN. These blocks could

alternatively be generated by either repeatedly calling a random PIN generate

function (as with PVV) until by luck all values get observed. All the attacker

can see are the encrypted PIN blocks, and he cannot see what order they are

117

in. Consider the example below, which uses 1 digit PINS and PANs, and 4

digit encrypted PIN blocks.

The attacker observes that encblock AC42 from the left hand list does not

occur in the right hand list, and likewise for encblock 9A91. Therefore he

knows that the PIN corresponding to AC42 is either 8 or 9 (and that the PIN

corresponding to 9A91 is either 8 or 9). The attack can be built up to reveal

two digits of the PIN, as with Clulow’s PAN modification attack [15].

PAN PIN PAN⊕PIN encblock PAN PIN PAN⊕PIN encblock

7 0 7 2F2C 0 0 0 21A0

7 1 6 345A 0 1 1 73D2

7 2 5 0321 0 2 2 536A

7 3 4 FF3A 0 3 3 FA2A

7 4 3 FA2A 0 4 4 FF3A

7 5 2 536A 0 5 5 0321

7 6 1 73D2 0 6 6 345A

7 7 0 21A0 0 7 7 2F2C

7 8 F AC42 0 8 8 4D0D

7 9 E 9A91 0 9 9 21CC

• ISO-0 Dectab PIN Derivation Attack – Imagine a financial HSM com-

mand Encrypted_PIN_Generate, which derives a PIN from a PAN, adds an

initial offset, then stores it as an ISO-0 PIN block. It has a decimalisation

table hardwired into the command that cannot be altered.

1. By looping through the offset value you can discover all 10000 possible

encrypted PIN blocks for that account, but you don’t know which are

which.

2. The classic way to proceed is to make a genuine guess at an ATM, and

try and catch the encrypted PIN block as it arrives for verification. This

should give you a start point into the loop, which you can use to calculate

the correct PIN. However, it is ugly – it requires one trip to a real ATM

per account attacked.

3. Instead, conjure many different PIN derivation keys, and use each to

derive a ‘correct’ PIN from the PAN of the target account. Keep the offset

fixed at 0000. The derived PINs generated under different PIN derivation

keys will be biased in accordance with the (fixed) decimalisation table.

4. This creates a unique distribution of frequency of occurrence of encrypted

PIN blocks outputed by the command. This distribution (combined with

a loop through offsets under a single key) allows you to synchronise the

loop of encrypted PIN block values with the loop of real PINs.

118

5. The estimated transaction cost is 10000 for the loop, and maybe 2,000–

10,000 data samples to determine the distribution. With modern trans-

action rates this equates to about 30 seconds per PIN. The attack should

work on any financial HSM where you can conjure keys (or that has

unrestricted generation facilities).

7.4 Formal Analysis of Security APIs

7.4.1 Foundations of Formal Analysis

This thesis constitutes the first comprehensive academic study of Security APIs.

Though they have existed for several decades, their design and development has

been the preserve of industry. One might expect the formal methods community to

have already embraced the study of Security APIs as a natural extension of protocol

analysis. This has not been the case, due in part to restricted circulation of API

specifications, but also due to the intrinsic nature of APIs themselves. Security API

use sufficiently specialist cryptographic primitives central to functionality to put

Security API design a distance away from O/S design (and the corresponding “pro-

gram proving” formal methods camp), and much closer to cryptographic protocol

analysis.

Unfortunately, the security protocols analysis camp seems reluctant to take on board

and interest themselves in problems with any degree of functional complexity –

that is, problems which cannot be expressed concisely. The only formal analysis

previously made of a Security API is in the 1992 paper “An Automatic Search

for Security Flaws in Key Management Schemes” [32], which describes the use of

a search tool employing specially designed heuristics to try to find sequences of

commands which will reveal keys intended to remain secret. The paper describes

the search tool and heuristics in some detail, but shies away from describing the

API itself, stating only that the work was done in cooperation with an unnamed

industry partner.

In comparison, for example, with an authentication protocol, a Security API is

several orders of magnitude more complex to understand, not in terms of subtleties,

but in the multitude of commands each of which must be understood. It may take

weeks, not days, of studying the documentation until a coherent mental picture of

the API can be held in the analyst’s head. In addition to the semantics of the

transaction set, the purpose of the API must be understood – the policy which it

is trying to enforce. For some examples such as PIN processing, the main elements

of the policy are obvious, but for more sophisticated key management operations, it

may require some thought to decide whether an the weakness is actually a breach

of policy.

119

Indeed it now seems that many conventional real-world protocols are becoming less

attractive targets for analysis, as they pick up further functional complexity, back-

wards compatibility issues, and suffer the inevitable bloat of committee design. The

analysis of the Secure Electronic Transaction (SET) protocol made by Larry Paul-

son [7] gives an idea of the determination required to succeed simply in formalising

the protocol.

There is thus little past work to build upon which comes directly under the heading

of Security APIs. In light of this, the formal analysis in this thesis builds on that of

security protocols, which is a well established area of work with hundreds of papers

published. The APIs analysed are specifically concerned with financial PIN process-

ing, due in no small part to its simple security policy – “the PIN corresponding to

a customer’s account must only be released to that customer”.

So, under what circumstances can the literature and tools for protocol analysis be

applied to Security APIs?

General-purpose tools from the program correctness camp such as theorem provers

and model checkers which have been applied to security protocols with success might

also be applied to Security APIs, as they were design to be general purpose in the

first place. However, there is no guarantee that the heuristics and optimisations

developed for these tools will be well-suited to Security API analysis.

There are obvious similarities between a Security API and a security protocol. The

user and the HSM can be considered principals, and the primitives used for con-

structing messages – encryption, decryption, concatenation are very similar. In both,

the messages consist of the same sorts of data: nonces, identifiers, timestamps, key

material, and so on.

However, the differences are significant too. Firstly, an API is a dumb adversary.

When a security protocol is run on behalf of a human – Alice or Bob – it is often

assumed that deviations or inconsistencies in the execution of the protocol can be

effectively reported and that the human can react when their protocol comes under

attack. Todays APIs do not interact in this way with their owners, and will stand

idly by whilst large quantities of malformed and malicious commands are sent to

them. Secondly, APIs are qualitatively larger than security protocols. There are

several orders of magnitude more messages than in an authentication protocol, and

the messages themselves are larger, even though they are made from very similar

building blocks.

APIs are simpler than security protocols in one area: there are usually only two

principals – HSM and User. This eliminates the need for reasoning about multiple

instances of protocols with multiple honest and dishonest parties, and the different

interleavings of the protocol runs. Unfortunately, the effort put into reasoning about

such things in the better-developed protocol analysis tools cannot be put to a useful

purpose.

120

7.4.2 Tools Summary

There are over a dozen formal analysis tools available to the public which could be

applied to Security APIs. Most are the product of academic research programmes

and are available for free, while several are commercial products (for example,

FDR [43]). In the context of gaining assurance about Security APIs, all formal

tools do essentially the same thing – they search. There are three broad categories

of tool, based on three different technologies: theorem provers, model checkers, and

search tools themselves. Figure 7.19 lists some common tools.

• Theorem Provers search for a chain of logic which embodies all possible cases

of a problem and demonstrates that a theory holds true for each case. In

the best case they find an elegant mathematical abstraction which presents

a convincing argument of the truth of the theory over all cases within a few

lines of text. In the worst case, they enumerate each case, and demonstrate

the truth of the theory for it.

A special category of theorem provers exist – resolution theorem provers. Res-

olution is a method of generating a total order over all chains of logic that

might constitute a proof, devised by Robinson in 1965 [36]. It permits a tool

to proceed through the chains of logic in a methodical order that inexorably

leads towards finding of the correct chain, or deducing that there is no correct

chain of reasoning. Resolution initially enjoyed some success in finding proofs

for theorems that had eluded other techniques, but this was largely due to

the fact that the transformation of the proof space was difficult for humans to

visualise, so it took a while to understand what problems resolution performed

poorly at, and how to design classes of pathological cases. Eventually it be-

came clear that the class of problems resolution performed well at was simply

different from that of other provers, and not necessarily larger. It remains as

an underlying mechanism for some modern theorem provers such as SPASS

(see section 7.4.3) but is not nearly as popular as in its heyday in the 70s.

• Model Checkers also search – they explore the state space of the system which

is specified as the problem, evaluating the truth of various conditions for each

state. They continue to explore the state space hoping to exhaust it, or find

a state where the conditions do not hold. Some model checkers use mathe-

matical abstractions to reason about entire sets or branches of the state space

simultaneously, or even apply small theorems to deduce that the conditions

tested must hold over a certain portion of the space. In theory model checkers

will examine the entire state space and can give the same assurance of cor-

rectness as a theorem prover, though in practice many set problems that the

model checker cannot complete, or deliberately simplify their problem into one

which can be fully examined by the model checker.

121

• Search Tools – such as PROLOG – most openly admit that at the heart of for-

mal analysis is methodical search. These tools provide specification languages

for expressing problems that make them amenable to breadth-first or depth

first-search, and then search away, looking for a result which satisfies some end

conditions. The searches are often not expected to complete.

Theorem Provers Model Checkers Search Tools

Isabelle Spin Prolog

SPASS SMV NRL Analyser

Otter FDR

Figure 7.19: Well known formal analysis tools

So at heart, all the tools do the same thing. For those simply searching for faults, the

state-of-the-art tool that will perform best on their problem could lie in any of the

three categories. However, for those concerned with assurance of correctness, there

is an extra axis of comparison between the tools – rigour. Some formal tools are

designed with an overriding goal that any answer that they produce is truly correct;

that no special cases or peculiar conditions are missed by the tool (or any of its

optimisations) that might affect the validity of the answer. The most visible affect

of this design philosophy is in the preciseness and pedanticism of the specification

language that the tool accepts. It is often this language – the API for the tool –

which is the most important component of all.

7.4.3 Case Study: SPASS

SPASS [52] is a FOL (First Order Logic) theorem prover. It tries to automatically

construct a proof of a theory by applying axioms presented in the user’s problem

specification, and inbuilt axioms of logic. The chain of reasoning produced will

normally be much more detailed than that which would be necessary to convince

a human of the truth of a theory, and will require a degree of translation to be

human-readable.

SPASS was recommended as an appropriate and powerful tool which could reason

about monotonically increasing knowledge, and solve reachability problems in a set

of knowledge. In order to prove the existence of an attack on an API, SPASS had

to demonstrate a sequence of commands which would reveal a piece of knowledge

which was supposed to remain secret. The author represented commands in the

API as axioms stating that if certain inputs were ‘public’ (i.e. known to the user

of the device, and thus an attacker), then some manipulation of the inputs (i.e.

the output) would be public also. Variables were used in the axioms to range over

possible inputs. The simple example below shows a hypothetical command which

takes an input X, and produces an output of X encrypted with key km.

122

formula(forall([X,Y,Z],

implies(and(public(X),and(public(Y),public(Z))) ,

public(enc(enc(i(wk),Z),enc(i(enc(i(tmk),Y)),X))))

),tran_tmki_to_wki).

formula(forall([X,Y,Z],

implies(and(public(X),and(public(Y),public(Z))) ,

public(enc(enc(i(wk),Z),enc(i(enc(i(wk),Y)),X))))

),tran_cc).

Figure 7.20: Sample SPASS code encoding several VSM commands

public(X) -> public(enc(km,X))

SPASS lacks infix notation, so the above command would be written in the problem

specification as follows:

formula(forall([X],implies(public(X),public(enc(km,X))))).

Representations of API commands from models of the CCA and VSM APIs are

shown in figures 7.21 and 7.20.

SPASS performed very well at reasoning about very simple API attacks – manip-

ulating terms according to its inbuilt hunches, and could demonstrate for instance

the ‘XOR to Null Key’ and ‘Key Separation’ attacks on the Visa Security Module

(sections 7.3.1 and 7.3.2). Modelling of more complex multi-command attacks on

the CCA was more problematic. In particular, one type-casting attack (see sec-

tion 7.3.4) consisting of a sequence of three commands could not be proved to work

even given several CPU days of execution time. If the the attack was artificially

shortened by setting an easier goal – the output of the second of the three com-

mands – SPASS would almost immediately be able to confirm that this goal was

attainable. Likewise, by providing additional ‘initial knowledge’ equivalent to hav-

ing correctly chosen the first command in the sequence of the attack, SPASS would

conclude in less than a second that the final goal was attainable. The full sequence

of three commands seemed to have defeated its reasoning, and there was no way to

tell how or why.

The way in which SPASS reasoned, though highly developed and the topic of re-

search for some years by the development team at MPI in Saarbruken, remained

a mystery. The documentation provided with SPASS constitutes a brief HOWTO

guide, a list of command line switches, and a elaborate document testifying to the

rigour of the proof method used by SPASS [39]. None of this gave much illumina-

tion to the understanding of the circumstances in which SPASS would be likely to

123

\% these are the commands provided by the 4758 CCA

\% Encrypt Command

\% W is an encrypted token containing the key

\% X is the data

formula(forall([W,X],implies(and(public(W),public(X)) ,

public(enc(enc(inv(xor(data,km)),W),X))

)),Cmd_Encrypt).

\% Key Import Command

formula(forall([KEK,TYPE,KEY],implies(

and(public(TYPE) , and(public(enc(xor(KEK,TYPE),KEY)) ,

public(enc(xor(km,imp),KEK)))) ,

\% ====>

public(enc(xor(km,TYPE),KEY))

)),Cmd_Key_Import).

\% Key Part Import Command

\% W is input token

\% X is cv base

\% Y is clear xor value

formula(forall([W,X,Y],implies(and(public(kp(X)),

and(public(Y),

public(enc(xor(km,kp(X)),W)))),

\% ======>

public(enc(xor(km,X) , xor(W , Y))))

),Cmd_Key_Part_Import).

Figure 7.21: Sample SPASS code encoding several CCA commands

124

perform well, nor how to represent problems in a way most amenable to analysis

in the extremely rich specification language of first order logic. The output from

SPASS was similarly mysterious, a sample of which is shown in figure 7.22.

The biggest unanswered question remained unaddressed: how could the progress of

the tool itself whilst be monitored whilst it was running? The release version simply

sits there and thinks. It says ‘PING’ once every few seconds, to assure the user that

it is still alive, but apart from that there is no user feedback as to how the search

for a proof of the theory is proceeding.

It became clear that whilst it was appealing to harness decades of research into

search methods, optimisations, and data structures for representing state, doing

this by picking an off-the-shelf tool would be a hit-and-miss affair, and would never

be unlikely to yield interesting new results about Security APIs, unless given several

years of research.

125

--------------------------SPASS-START------------------------------

PING PING PING PING PING PING PING PING

SPASS V 1.0.0

SPASS beiseite: Proof found.

Problem: d:\mkb23\proj\formal\4758-cmd3c.spass

SPASS derived 2987 clauses, backtracked 0 clauses and kept 622 clauses.

SPASS allocated 2168 KBytes.

Here is a proof with depth 6, length 38 :

2[0:Inp] || -> public(k3)*.

5[0:Inp] || -> public(data)*.

6[0:Inp] || -> public(imp)*.

7[0:Inp] || -> public(xor(pin,data))*.

8[0:Inp] || -> equal(xor(U,z),U)**.

9[0:Inp] || -> equal(xor(U,U),z)**.

10[0:Inp] || -> public(enc(xor(kek,pin),pp))*.

11[0:Inp]public(U) || -> public(kp(U))*.

12[0:Inp] || -> equal(xor(U,V),xor(V,U))*.

13[0:Inp] || public(enc(xor(km,data),pp))*+ -> .

15[0:Inp] || -> public(enc(xor(km,kp(imp)),xor(kek,k3)))*.

17[0:Inp]public(U) public(V) || -> public(xor(V,U))*.

18[0:Inp] || -> equal(xor(xor(U,V),W),xor(U,xor(V,W)))**.

21[0:Inp]public(U) || public(kp(V)) public(enc(xor(km,kp(V)),W))+

-> public(enc(xor(km,V),xor(W,U)))*.

22[0:Inp]public(U) || public(enc(xor(km,imp),V))*+

public(enc(xor(V,U),W))* -> public(enc(xor(km,U),W))*.

23[0:Rew:12.0,15.0] || -> public(enc(xor(km,kp(imp)),xor(k3,kek)))*.

24[0:Res:22.3,13.0]public(data) || public(enc(xor(km,imp),U))*

public(enc(xor(U,data),pp))* -> .

26[0:ClR:24.0,5.0] || public(enc(xor(km,imp),U))*+

public(enc(xor(U,data),pp))* -> .

31[0:SpR:12.0,8.0] || -> equal(xor(z,U),U)**.

78[0:SpR:18.0,12.0] || -> equal(xor(U,xor(V,W)),xor(W,xor(U,V)))*.

--------------------------SPASS-STOP------------------------------

Figure 7.22: Sample output from SPASS (edited to fit on one page)

126

7.4.4 MIMsearch

The MIMsearch tool is a distributed search tool developed by the author as part of

this thesis, designed for exploring sequences of API commands to determine if they

violate security assertions about an API. It was created as an experiment rather

than as a potential rival to the other formal tools; its specific goals were as follows:

• The primary goal was to learn about the strengths and weaknesses of model

checkers (and theorem provers) through comparison with a well understood

example;

• A secondary goal was to improve the author’s ability to use the existing tools,

through better understanding of their internal working

• A third goal was to develop a tool which allowed reasonable estimates of the

complexity of models of APIs to be made, to get an idea of the bounds on

complexity of API attacks which are already known

• The final goal was functional: to try to create a tool which was powerful enough

to reason about existing financial APIs, in particular those using XOR.

MIMsearch works by manipulating trees of terms representing functions and atoms.

A command is executed by substituting the arguments into variables within a larger

term, and then simplifying the term. It has native support for encryption, and

crucially, for reasoning about the XOR function. It has a sophisticated suite of read-

outs to allow an observer to see the progress of a search for an attack, and compare

this progress against predefined subgoals when searching for a known attack.

Heuristics

Most existing tools have an array of heuristics which are applied to control the

direction of the search, and to try to produce an answer as quickly as possible. Whilst

these are indeed useful when they solve a problem rapidly, they hinder attempts to

measure problem difficulty by seeing how long a search tool takes to solve it. As one

of the goals of the MIMsearch tool was to gain a greater understanding of problem

complexity, as few heuristics as possible were used.

The only heuristic available in the current implementation is ‘likely reduction filter-

ing’. This technique filters out a subset of possible terms that could be substituted

in as an argument into one of the terms representing a transaction. The filters

are provided by the human operator along with the problem specification, and are

conventional terms with wildcards to specify ranges of structures. The reasoning

behind the heuristic is that substituting in a phrase which does not enable execu-

tion of a command to perform any simplification after all the arguments have been

substituted is not likely to correspond to a meaningful step of any attack. Whilst

this heuristic sounds pleasing, there can be no proof that it is true in all cases.

127

Problem Specification

The API is specified to MIMsearch as a series of terms containing variables rep-

resenting the arguments. The example below shows a specification for the CCA

Encrypt command. The Input lines are terms describing likely-reduction filters.

The Output line describes the function of the command; ZERO and ONE are variables

where the first and second arguments are substituted in (in this example KM and

CV_DATA are atoms specific to this API).

Cmd ‘‘Encrypt’’

Input ENC(XOR(KM,CV_DATA),ANY)

Input ANY

Output ENC(DEC(XOR(KM,CV_DATA),ZERO),ONE)

End_Cmd

After the API specification, the conditions for a successful attack are specified with a

set of “initial knowledge” – terms which are publicly available and thus known to the

attacker from the beginning. Finally, there are goals – terms which if proved to be

made public by some sequence of API commands will constitute a breach of security.

The classic initial knowledge includes one instance of every type of key normally

available in the device, in particular, a live PIN derivation key encrypted under the

relevant master key, and a PAN. The typical goal is to discover { PAN1 }PDK1 – a

particular PAN encrypted under the live PIN derivation key.

Architecture

The idea at the heart of MIMsearch is “meet-in-the-middle” – searches are performed

both forwards from the initial knowledge and backwards from the final goal, and

the resulting terms and goals stored in hash tables. The tool constantly looks for

collisions between entries of one hash table and the other, effectively square-rooting

the complexity of the search in the optimum case.

The search proceeds in a depth-first manner, with separate but interleaved threads

of the program searching forwards and backwards. The total search depth is the

sum of the forward and backward depths. For each layer of the the search, the

forward searching thread first selects a command from the API specification, then

randomly selects initial knowledge to substitute in as arguments to that command.

Each new term produced is added to the initial knowledge, hashed using collision-

resistant hash function, and then used to set a single bit in a knowledge hash table

to represent its discovery. The hash is also looked up in the goal hash table, and if

the corresponding bit in the goal table is set, an attack has been found (provided

that it is not a false collision). Once the maximum depth is reached and the final

term has been hashed and added to the knowledge table, the initial knowledge is

128

reset to that of the problem specification – the only recording of the path searched

are the entries in the knowledge and goal hash tables.

MIMsearch is unlike other tools that often continue to expand the knowledge set,

storing each term in a usable manner. This prevents wasted effort repeatedly deriv-

ing the knowledge of the same term again, but does not actually make for a more

balanced search, as it does not give any clue as to how to weight the probabilities

for selection of these terms as inputs for the next search. The MIMsearch approach

is a simple one: pick randomly and apply no heuristics to weight term selection. In

order to tackle significant size problems using this approach, a lot of brute force is

required.

Implementation

MIMsearch is written in C++ and Visual Basic, and comprises about 150 kilobytes

of source code. As it is intended to operate as a distributed system on a tightly knit

cluster of PCs, multiple programs are required. The main program can be activated

in three roles – launcher, searcher, and central node. The task of the launcher is to

receive the latest version of the searcher via a TCP stream from the central node,

and then set it running when requested. The searcher actually performs the search,

and communicates statistics and results back to the central node using TCP. The

central node collates the statistics, and then feeds to a GUI written in Visual Basic

which displays them in both graphical and textual forms.

Communication between searchers and mission control was implemented from scratch

on top of the standard Winsock API, for reasons of customisability and in mind of

future concerns about efficiency. There were a number of freely available distributed

systems packages for managing communication between nodes, but all suffered from

either unnecessary complexity in terms of simply providing a link for communicat-

ing statistics, or from potential poor efficiency and difficulty of customisation in the

context of enabling communication between nodes for hash table sharing.

129

Figure 7.23: The MIMsearch statistics display

UI Decisions

Design of the user interface was in some senses the most important part of the

project, as detailed feedback was found lacking from the other tools, and was the

key to gaining greater understanding of both problem and tool. The GUI comprises

of a statistics screen for the problem (figure 7.4.4), a control screen which monitors

the status and correct operation of the search nodes (figure 7.4.4), a watch screen

to monitor progress of the search against user defined goals (figure 7.4.4), and an

interactive command line interface for specific queries.

The main statistics screen shows most figures in powers of two, displaying the rate of

search and monitoring the filling of the knowledge and goal hash tables (figure 7.4.4).

For searches lasting more than several hours, this data serves just to assure the user

that the search is still in progress and that none of the search nodes has crashed.

There are also output screens displaying possible results from the search (when using

small hash tables this screen will display some false matches).

The control screen shows the status of the nodes, and gives a “complexity report” of

the problem in question (figure 7.4.4). This report gives an upper bound upon the

130

Figure 7.24: The MIMsearch control interface

size of search required to explore all sequences of commands up to a certain depth.

The most detailed statistics are shown on the watch display (figure 7.4.4). Each

watch entry represents a command in a user-defined sequence that represents the

attack the tool is searching to find. For each command, the display shows the number

of times the correct term as been chosen for each of its input, and the number

of times the correct output has been produced (i.e. when every input is chosen

correctly simultaneously). The rates at which correct inputs are chosen per second

is also shown. On the right hand side, two columns display the status of these terms

with respect to the hash table. As output terms are produced correctly for the first

time, they are entered into the hash table, and this is denoted by a ‘1’. This watch

display makes it possible to observe whether or not all the individual preconditions

for a command in the sequence of the attack are occurring, and observe their rates.

It can then be easily seen whether it will just be a matter of time waiting for these

conditions to coincide simultaneously by luck, or whether the tool is incapable for

some reason of finding the attack sequence.

131

Figure 7.25: The MIMsearch ‘Watch’ display

132

Chapter 8

Designing Security APIs

This chapter discusses the design of Security APIs. It first discusses the circum-

stances under which a Security API might be useful, then discusses heuristics for

good design. It goes on to discuss the issues of authorisation and trusted path, as

well as procedural control design and social engineering issues.

8.1 Can Security APIs Solve Your Problem?

How do you decide whether or not you need a Security API, with or without an

accompanying tamper-resistant HSM embodying it, to solve your problem? And

how can you decide whether or not your problem can be solved by a properly designed

Security API?

A good Security API design will do a mixture of two things:

1. Take a policy that you don’t know how to economically enforce, and translate

it into multiple well understood policies which are easy (or, at least, obvious)

to enforce.

2. Take pieces of a policy that are rigid and easy to enforce, and deal with them

Suppose you have the problem that an employee has the potential to damage your

company through abusive manipulation of an API that he operates every day. The

Security API will be able to monitor and control this person, but when it translates

the broad ‘prevent abuse’ policy into smaller policies, these policies must be ones

that you can easily enforce. Consider three possible designs for the API:

1. If the Security API performs an audit function, watching the stream of com-

mands from the user, and logging them for later examination, this will only

solve your problem if you have attentive and capable auditors to watch the

trail.

133

2. If the Security API prevents certain types of commands from being issued

without supervisor approval, you must have well-trained and trustworthy su-

pervisors to give the approval.

3. If the Security API recognises all the bad sequences of commands and can

prevent them, you implement it, and you need do nothing more. However, the

API designers must have fully understood the full range of abuse possible.

In the first two cases, the API serves a simple but very useful purpose – it pushes

the problem elsewhere– to another service. For your problem to be solved, these

destination services must either exist, or be obvious how to develop. In the final

case, the API tries to actually solve the problem itself– preventing known abuses

(or, in the limit, designing a system which cannot be abused). However, in many

circumstances, deciding whether a not an action is an abuse of the API will rely on

a lot of context, so the API will not have nearly enough environmental information,

nor reasoning capability to decide for itself.

To understand whether or not you need a Security API you need to understand

whether there is any other way to split the problem into pieces that you already

understand, and whether or not a Security API solution proposed to you will actually

absorb some of the problem and stop it dead in its tracks, or whether or not it will

return the problem to you in a new form (which may or may not be easier to solve).

To understand whether or not you can solve your problem with a Security API,

you need to understand whether you have the resources to enforce all the smaller

policies that the Security API will throw back at you. If your policies are highly

context sensitive, the API will most likely throw them back at you in a different

way, and it will take careful design for these new policies to be amenable to you. If,

on the other hand, they are static and well-defined, the Security API may be able

to rigidly interpret them.

So Security APIs are good at enforcing policies to the letter, and good at devolving

responsibility for decisions elsewhere. This rigidity of purpose makes them both

strong and brittle. They are strong because a persuasive attacker cannot socially

engineer them to change their policy. They are brittle because this policy gives

them a blinkered understanding of the outside world and the entities within it, and

how to reason about them. Thus if there is a slight environmental change in the

outside world, for instance if it becomes acceptable for several people to share an

authorisation token, many of the security properties might be lost.

134

8.2 Design Heuristics

How do you design a Security API to make sure it does its job, and nothing more?

This section provides some advice and heuristics for good API design, categorised

into five sections.

8.2.1 General Heuristics

• Understand your threat model. If a clear policy has been provided stating

the necessary properties of the API, it shouldn’t be to hard to imagine how

different potential attackers might try to violate these properties, and then

design in some resistance. If you have not been given a clear policy that defines

which threats the API must resist, be conservative. Protect against threats

which can be dealt with, but don’t get bogged down with complexity trying

to solve hard problems. For example, Certification Authority APIs must avoid

the authorisation problem – “how do you decide when to give permission to use

a signing key?”. This problem is so subjective that trying to encode a partial

solution into the API is probably a bad idea. Likewise, HSMs communicating

with unknown other principals should not get lost in the secure introduction

problem – “how do you know you are communicating securely to someone you

have only just met for the first time?”. The 4758 CCA’s role-based access

control system is arguably an example of an API trying to bite off too large

a chunk of a hard problem. Although it is powerful and flexible, instead of

increasing assurance of security, it increases uncertainty that the configuration

and access permissions of the device are correct for the policy.

• Just as there can be no such thing as a general purpose security policy, thus

there is no such thing as a general purpose security API. However, a general

purpose API can be a useful thing – it has architectural features for data

representation and commands and access control which need not be redesigned

from scratch. It is only when a specific policy is added that it turns into a

Security API. If you are designing a general purpose API, recognise that it is

policy free, and that someone will have to add the policy. Make sure OEMs

can shield its features from clients. Do this either with fine-grain access control

(highly flexible transactions need highly flexible access control), or by allowing

OEM code to enter the trusted perimeter and establish a second layer API.

• Avoid adopting an unnecessarily complex general purpose API to get the func-

tionality you want – you’ll get more functionality than you need, and you may

not be able to easily switch off the bits you don’t like. If you want to build

on existing technology, a better approach is to commission an extension to

an API. Section 7.3.9 describes problems with the CCA Key_Test command.

This command is a general purpose check value calculation facility, and though

135

it can be enabled and disabled, the different input parameters cannot be prop-

erly locked down.

• Invoke public key technology only when necessary, when the benefits to the

larger system are clear. Consider whether your product will only interact with

its own kind, or whether it must be compatible with heterogeneous designs. Be

aware that public key technology (especially PKCS standards for RSA) have

some policy decisions embedded in the underlying constructs. This embedding

can make robustness and diversity easier, as simply by being compatible with

another node, you can take for granted certain aspects of their security policy.

However, if you take too many standards on board, compliance may become

a problem (Davis details some of the problems in [17]).

There is also the more subtle problem of loss of explicitness in your own se-

curity policy. For example whilst PKCS#1 public key padding is an indus-

try standard and considered vital for providing a useful API, implementing

it within the HSM puts a whole set of implicit requirements on the module

to be responsible for protection against the sorts of mathematical attacks on

RSA that PKCS#1 was designed to resist. The split of responsibility be-

tween the PKI software and the supporting crypto hardware can get quite

muddied. Identifying and resisting transfers of responsibility requires a con-

textual awareness outside the scope of the API, so if your policy is not well

defined, understanding who amongst the suppliers, developers and integrators

has taken responsibility for an aspect of your policy will be very difficult.

• Look at the environments in which a device implementing your API will op-

erate, and find opportunities for trusted interaction. Exploit trustworthy en-

vironments to establish an identity behind your API, and to introduce it to

trustworthy parties. The ‘XOR to Null Key’ attack in section 7.3.1 was ef-

fectively fixed by exploiting the available trusted path to make all of the key

loading operation secure.

• Limit the amount of state which can be accumulated in and around your

device, if only to make analysis easier. Don’t let it hold more keys than it

needs to, and don’t allow keys to be used for longer than they need to. The

unnecessarily high capacity of monotonic APIs has made attack techniques

such as the ‘meet-in-the-middle’ attack much easier (see section 7.2.2).

8.2.2 Access Control

• Give your API a view of the outside world with just enough knowledge for its

policies to make sense. If the policies are “everyone must do something” or

“no-one should be able to do something”, then it may be sufficient to have

one conceptual identity – “the outside world”.

136

• Decide what abuse will be prevented, and what abuse will only be detected.

Separate the API features that prevent from the features that detect, and

do not muddle roles and identities. Assign roles to people to prevent abuse;

collect identities of people to detect abuse. When supporting the detection

of abuse, be whole hearted – identify real world individuals (not roles) to

the device, and give secure audit of the actions they perform. The proposed

attacks on Baltimore’s implementation of Security Officer access control shows

what can happen if the purpose of tokens given to humans gets muddled

(section 8.4.1). When non-human entities issue commands, think carefully

about who is responsible for this entity – is it the author of the entity code, or

the shift supervisor? If it is a supervisor, make sure they are properly trained

to understand this responsibility.

• Try not leave clients with complex decisions on how to configure their ac-

cess control systems; it is better if you design only one way that your sys-

tem can be configured to achieve a particular end, rather than multiple ways

your system can be configured to accommodate a range of procedural con-

trols. You need then only state clearly the assumptions you make about the

client’s procedural controls. Vendors may prefer to externalise these issues,

and devolve responsibility, but interactivity will make for more secure sys-

tems. Interactivity between API designer and client can be encouraged by

employing vendor-enabling codes to unlock API functionality (these are some-

times already present for feature-oriented marketing strategies). You can then

maintain a stake in the configuration of the system, and provide advice as to

the consequences of changing functionality.

• Be cautious about using dual control as its use can easily create the poor

incentives for long-term security. Decide which parties in your dual control

system should be active, and which should be passive. Two common situations

are:

1. Two parties both make an independent decision whether to authorise,

and are not necessarily expected to concur. Here both parties have to be

active.

2. Both parties parties are aware of a procedure that is to be followed to

the letter, and must ensure that together it is done exactly according the

specifications. Here, one party can be active, and one passive.

Be careful about mixing active and passive dual control. Split responsibility

can quickly turn into diminished responsibility, so an easy mistake will be for

one party to ignore his duty to monitor the activities of the other, thinking

instead that the small active stage he has to perform is all that matters.

137

• When the host machine sends data that the HSM cannot check for integrity, try

to make it difficult for the host to modify the data undetected. Exploit trusted

paths such as smartcard readers and built-in displays, as these can be used to

provide feedback upon the host’s activity. Another option is to maintain an

audit trail; the risk of detection is a powerful deterrent to possible subversion

of the host.

• Do not make authorisation tokens multi-purpose. In particular, do not use the

same token for authorisation and identification.

8.2.3 Transaction Design

• Treat the design of each transaction like the construction of a protocol and

follow the explicitness and simplicity principles: be explicit about identifying

the types, sources and destinations of data passing, but keep the design simple,

and ensure that the additional data you have included can be verified in a

meaningful way.

• Maintain orthogonality between different sets of API functions. Avoid re-

using a command to achieve extra functionality. In particular, keep backup

orthogonal to import/export.

• Protect the integrity of data. Protect the confidentiality of data where neces-

sary. The correct tool to use to protect integrity is a MAC with a suitable size

block cipher, a keyed cryptographic hash function, or a signed cryptographic

hash of the data. Never use parity bits or CRCs for integrity checking.

• Be careful how you process secret information in a transaction. Be aware

that each error message which is conditional upon secret data will leak some

information about that secret data. Try to avoid entropy leakage all together,

or ensure that small pieces of information cannot be aggregated. Partition

your error return code space to make it easier to manage and contain sensitive

errors. However, where possible, it is preferable for a transaction to return

an error code that does not leak information than for it to produce ‘garbage’

(i.e. results which are undefined when the inputs are invalid) – this practice

frustrates analysis. Sections 7.3.10 and 7.3.12 describe information leakage

attacks.

• As well as watching for information leakage through the output of an API

command, be aware of information leakage through side-channels, in particu-

lar timing attacks, as they can be performed purely in software. Section 7.3.8

describes a timing attack where DES keys generated can be identified by ob-

serving timing characteristics of partial matches against the table of DES weak

keys.

138

• Put randomisation and redundancy in encrypted secret data. If the data con-

tains weak secrets, or different data values have a non-uniform distribution,

then encryption without randomisation will leak information. If you use ran-

domisation, be sure that you have enough redundancy, or use a cryptographic

integrity check, otherwise the randomness fields may make it easier to conjure

encrypted data (see sections 7.2.3 and 7.3.5).

• Think carefully about structural similarities between transactions that perform

the same sort of task, but for a different part of the API. Identify when a

task is roughly the same and imagine you are going to re-use the code in your

implementation. Put in measures to ensure there is an explicit incompatibility

between inputs and outputs to the data flowing in and out of the shared

functions. As a rule of thumb, if you identify similar transactions, redesign

them to make them completely different, or exactly the same.

8.2.4 Type System Design

• Categorise key material and data by form and allowed usage, and create ‘type

information’ describing each usage policy. Bind this type information to the

data cryptographically. Be explicit when generating this type system, and

make things as simple as possible (but no simpler).

• Create a graphical representation of your type system using boxes to represent

types and arrows describing the major information flow through transactions.

Section 7.1.2 describes the author’s preferred type system notation, which can

express the much of the semantics of an API in a single diagram.

• Analyse the type system for bi-directional flows of information, and try to

eliminate the need for them, should they occur. Bi-directional flow creates

equivalent types, which add unnecessary complexity.

• Most type systems are concerned with the flow of secret key material. Known

or chosen keys should not be allowed into such type systems.

• Assemble your key material into a hierarchy. Try to keep the hierarchy as

shallow as possible. Then map out the types on this diagram, and look out for

and avoid types whose roles cross hierarchical boundaries – these are a very

bad idea. The hierarchy diagram of the VSM [8] clearly showed an anomaly

which led to an attack on the VSM (see section 7.3.2).

• If a single HSM is to be multi-purpose, virtualise the entire device and ensure

that no data from one virtual device can be used in the other. Avoid co-

habitation of unrelated data in the same hierarchy or type system. Restrict

entry of key material into type systems and hierarchies using authorisation.

Do this upon generation and import.

139

8.2.5 Legacy Issues

• Isolate your legacy support from the rest of the system. Where possible, use an

orthogonal command set for the legacy mode. In effect, create a virtual legacy

device and only pass data between your device and the legacy device when

absolutely necessary, and even then only according to well analysed restricted

rules.

• Make sure the legacy support can actually be switched off for all transactions.

In a monotonic API design, the existence of old legacy tokens could com-

promise a modern installation, even though the generation facilities for new

tokens of this form have been disabled.

• Avoid related key sets. Section 7.2.4 described the many problems they create.

If related keys must be used for some protocol, try to generate them dynam-

ically from a master key. Keeping the value of the relationship between keys

secret is possibly sufficient.

• If you must use encryption with short key lengths, watch for parallel at-

tacks on sets of keys (see section 7.2.2 for the attack technique, and sec-

tions 7.3.3, 7.3.6, 7.3.7, 7.3.9 and 7.3.11 to see the far reaching consequences

of this attack). Possible preventative measures include limiting membership

levels of types to avoid the meet-in-the-middle attack, or preventing test vector

generation. To push the ‘limited type membership’ idea to the extreme – have

a set of slots that can contain keys, and restrict the procedure to re-load keys

into these slots. That way you can generate new keys without restriction, but

if you crack one of them it won’t help, because you can’t go back and access

it again.

• Ensure that keys are ‘atomic’: permitting manipulation of key parts is danger-

ous (see sections 7.2.5 and 7.3.6). When keys are derived using master secrets

and device-specific information such as serial numbers, avoid adding structure

to the key material. Don’t provide generic mechanisms for supporting key ma-

terial extraction operations, such as those used in SSL – PKCS#11 does this

with it’s EXTRACT_KEY_FROM_KEY mechanism, which is useless unless all the

parameters can be authenticated generically. A better approach is to generate

a special transaction which can only support this particular usage.

• If you do identify a weaknesses in your API assume the worst – that it is

generic. Search carefully for all possible instances of attack exploiting this

weakness, then seek an equally generic solution. Patching individual parts

of the transaction set is unlikely to solve all of the problems. The author

nearly got caught out in [10] suggesting a ‘sanity check’ countermeasure for

the decimalisation table attack which was not generic, and could have been

140

defeated by trivially upgrading the attack to modify the decimalisation table

in a more subtle way (see section 7.3.10).

8.3 Access Control and Trusted Paths

Access control is necessary to ensure that only authorised users have access to pow-

erful transactions which could be used to extract sensitive information. These can be

used to enforce procedural controls such as dual control, or m-of-n sharing schemes,

to prevent abuse of the more powerful transactions.

The simplest access control systems grant special authority to whoever has first use

of the HSM and then go into the default mode which affords no special privileges.

An authorised person or group will load the sensitive information into the HSM at

power-up; afterwards the transaction set does not permit extraction of this informa-

tion, only manipulation of other data using it. The next step up in access control is

including a special authorised mode which can be enabled at any time with one or

more passwords, physical key switches, or smartcards.

More versatile access control systems will maintain a record of which transactions

each user can access, or a role-based approach to permit easier restructuring as the

job of an individual real-world user changes, either in the long term or through the

course of a working day. In circumstances where there are multiple levels of autho-

risation, the existence of a ‘trusted path’ to users issuing special commands becomes

important. Without using a secured session or physical access port separation, it

would be easy for an unauthorised person to insert commands of their own into this

session to extract sensitive information under the very nose of the authorised user.

In many applications of HSMs, human authorisation is an important part of normal

operation. There is a danger that the path by which this authorisation reaches the

HSM will be seen as the weakest link in the chain, so this trusted path must be

carefully designed.

The phrase ‘trusted path’ is used to describe a channel by which sensitive data

is communicated to and from a HSM. This could be a special port for attaching

a keypad or smartcard reader, or could be an encrypted communications channel

which passes through the host before reaching some piece of “trusted hardware”,

maybe a special keypad with a microcontroller. Some HSMs do not have long-term

trusted paths for data – they instead use the same channel all the time, and have

a ratchet function that ensures that the level of trust in this path can only go

down. Resetting of the trust ratchet incurs a wipe of the HSM memory. For certain

applications, this model is sufficient. The “resurrecting duckling” policy [38] and its

terminology are useful in understanding this trust model.

A trusted path must always end with a trusted device, which should be tamper

evident. A classic example of a mistake in key entry procedure is described in [3].

141

The Visa Security Module had a serial port to which a VT100 terminal was normally

connected. However, one bank had a purchase policy that only IBM terminals

should be bought, and these were not compatible with the VSM’s trusted path. A

bank programmer helpfully provided a compatible laptop, which could easily have

included key logging software.

8.3.1 How much should we trust the host?

Security processors were originally created to avoid placing trust in the O/S and

physical security of the host computer, but due to inadequate trusted I/O channels

and ‘defence in depth’ policies, API designers tend to place some trust in the host.

Once the host takes its own security precautions, the split of responsibility becomes

a grey area, and in the worst case can lead to risk dumping.

Certainly banks running highly developed accounting and book-keeping systems that

interface with a HSM believe they can exercise control over the host. For instance,

IBM stated in response to software attacking banking security HSMs, that an insider

would not be granted access to run programs of his choosing and copy information

from the host [24]. This may have been the case when the host was a mainframe

and was programmed in obscure languages, but PC hosts with modern software set

a much lower bar for the attacker. Furthermore, while banking HSMs may have few

human operators interacting directly with the host, humans regularly interact with

PKI supporting HSMs in the course of their daily duties.

If the host is connected to some form of network – a VPN or the internet itself – it

is theoretically vulnerable to many more than just its usual operators. But compro-

mising a machine remotely and remaining undetected is far from straightforward;

the unusual traffic may be spotted anywhere between entering the corporate VPN

and reaching the host. An insider’s physical access to the host machine and even

its hard drive makes defeating O/S security almost trivial. Once an insider with

physical access has compromised the O/S security, he may of course choose to do

some of the sabotage work remotely, to avoid attracting attention by working too

long at the machine.

Highly protected modules disconnected from networks by policy sport different weak-

nesses: Discouraging access to the these will make it likely that the O/S will remain

the vanilla version of whatever was first installed, requiring a multitude of patches

to even start blocking all the security holes. If procedural controls for initialising the

host are tight, the O/S will likely be installed with minimum configuration changes

and explicit instructions on what these settings should be. Thus disconnected ma-

chines tend to be in well documented insecure configurations. If there is a weakness,

an attacker could write a script, and may be able to exploit it with only seconds of

access to the HSM.

142

In summary, the insider threat is so great that it is unlikely that a host machine can

resist determined attempts to run unauthorised software. However, subtle sabotage

of the existing host software is harder, and is most feasible when the insider can

continue their attack via the local network.

Despite this risk, it makes sense trust the host at least as much as its least privileged

operators. As a rule of thumb, host compromises that result in low-level abuses

detectable by audit can be little worse than abuse by an operator (though blame is

harder to assign). It is only when HSM manufacturers require a full re-establishment

of a trust in the host O/S integrity before performing sensitive operations that end-

user compliance is unrealistic.

8.3.2 Communicating: Key Material

Key material must be exchanged whenever a link is established between two parties

who have never communicated before. For symmetric keys, this key material had

to be kept secret, so dedicated terminals or keypads were introduced especially

for key entry. The VSM had a serial port which was typically connected to a

VT100 terminal. VT100 terminals were not programmable devices – unobserved

modification of the device to achieve eavesdropping capability would be difficult.

In the case of public key HSMs, during key-loading it is only the integrity of the

key which needs to be assured. A new key entry approach developed, where the key

material was entered through an untrusted path, and then a trusted path was used

for the HSM to report what it had received (i.e. a hash of the public key entered),

and for a final authorisation to enable the key. Public key HSMs can be considered

to have two trusted paths, one for display and one for authorisation, instead of the

original key material trusted path of the previous generation.

Because this sort of key material can be authorised in retrospect of its entry, PKI

HSMs shift their concern away from secure entry of key material, and consider the

authorisation of the material as a quite different act from its entry. Both FIPS 140-

1 and the new 140-2 have not captured this shift of emphasis, and maintain that

anything within the module is sensitive, and privileged. The PKI analogue of FIPS

key generation/import is admission of the key into a hierarchy, which is done with

a signing operation, producing a certificate. These signing operations are governed

using a trusted authorisation path.

The IBM 4758 CCA recommends use of public key cryptography for securing com-

munications, and provides dual control governing the acceptance of public keys. It

has no trusted path for communication at all. Sabotaging the host to swap in a false

public key during the dual control entry phase would be non-trivial. However, the

legacy approach of entering key material in the clear is an even worse case. Here,

setting a single environment variable CSU_DUMP to TRUE is enough to capture all

the key material entering a 4758 in a debugging log file. The lesson here is that

143

Class I Passive tokens, which present a shared secret upon

request, and readily duplicated with appropriate hardware.

includes passwords, PINs, and secret holding smartcards.

Class II Active tokens, which are keyed to a specific device

Class III Active tokens, which require secondary authorisation

(e.g. entering of a PIN)

Class IV Active tokens, with integral trusted I/O capability

Figure 8.1: Classification of authorisation tokens

communications paths, trusted or otherwise, cannot easily accommodate the entry

of confidential key material – eavesdropping on unencrypted communications is too

easy.

8.3.3 Communicating: Authorisation Information

The authorisation trusted path need only transmit a single bit of information – yes

or no. However, designing trusted paths for authorisation has proved harder than

one would think, because they must be viewed in conjunction with a display trusted

path, which reveals to the authoriser the nature of the request.

Different types of authorisation token have advantages and disadvantages depending

upon the nature of the request to be performed. A classification of authorisation

tokens is shown in figure 8.1, based upon input output capabilities of the tokens.

Temporal authorisation is where the trusted path will respond with a yes for au-

thorisation requests, for the duration in which the token is present. One-shot au-

thorisation, is where a token will only respond with a yes when it is activated with

respect to a specific request.

Passwords

It is common to use passwords to authorise access to both HSM functions, and data

stored on other access tokens. It is sometimes impractical to provide the HSM with

a dedicated keyboard for password entry, so the passwords are routed via the host.

144

This is the case with nCipher, and CCA RBAC passphrases. A subverted host could

of course record these passwords as they are entered, but nevertheless this approach

remains popular.

In the case of the 4758 RBAC, the passphrase is the only line of defence; it is entered

on the keyboard of the host PC, and keypress logging software or hardware is easy

to install. It is vital to regularly audit this sort of system to maintain assurance

that users have not been compromised, but a simple hardware logger [41] may be all

that is required to easily add and removing the logging capability without leaving

a ‘paper trail’. Passwords still are reasonably common in authorisation situations:

they are rarely the only line of defence, and the risks involved in mounting a long

term eavesdropping attack are not insignificant.

One smartcard reader vendor [42] connects their reader between keyboard and host,

so that they can bypass the host when a password or PIN is to be submitted to the

smartcard. This is a step in the right direction, but whilst enabling or disabling the

bypass is optional, the challenge simply becomes for the host machine to fool the

user into entering their password when the bypass is not activated.

The major weakness of passwords is that they can be duplicated by completely

passive eavesdropping.

Special Keypads

PKI HSM vendors Baltimore and Chrysalis both support PIN entry as part of

the authorisation process. Baltimore’s modules in particular actually integrate the

special keypad into the front of the security module housing. Special keypads are

useful because they push up the difficulty of intercepting the trusted path, not

because keypad entry is inherently more secure, but just because they are more

likely to be proprietary and difficult to duplicate. Chrysalis has a special approved

datakey reader with integrated keypad, shown in figure 8.2.

There remains a danger of hardware interception: the smartcard may be able to

secure its trusted path to the host with a previously generated shared secret, but

the same is not generally true of the keypad or GUI. In fact, in the case of the Luna

PED, both the key material from the datakey and the user’s PIN travel in the clear

down the cable connecting the PED to the dock, which is a standard RJ45 ethernet

cable.

To get maximum benefit from special keypads, they should be easy for users to iden-

tify as genuine, difficult for an attacker to sabotage or replace, securely connected

to the HSMs, only used for communicating the most sensitive information.

145

Figure 8.2: Chrysalis Luna PED (PIN Entry Device)

Smartcards

Smartcards are good for temporal authorisation, but poor for one-shot authorisation.

The chip itself has no input/output capability aside from that reserved for commu-

nication with the host. It has no concept of its physical location, nor whether or not

it is present in a reader. It can only note power being applied and removed from its

power pins, and assume that it has been inserted.

A straightforward way to set up temporal authorisation is for the HSM to engage

in a continual dialogue with the smartcard, e.g. repeating a challenge-response

authentication protocol, with a repetition rate set as desired. If the smartcard

is removed, the HSM will notice within at most one repetition period, and will

terminate the authorisation. However, when operating in a hostile environment, the

duration of authorisation should only be considered terminated once the smartcard

has been returned to a sealed environment out of which it cannot communicate.

Rigorous procedural controls should specify this as a safe with no room for wires,

and electromagnetic shielding.

One shot authorisation is far more difficult to achieve with smartcards, because the

internal circuitry of the smartcard has no way of telling what is happening to the

environment outside it. The only way to achieve one-shot authorisation with smart-

cards is by placing trust in the smartcard reader. The smartcard reader needs to

explicitly represent the act of single authorisation. One way to do this would be for

the reader to leave the smartcard unpowered, and only power it up for a fixed du-

ration (e.g. 5 seconds) upon a press of a button on the reader. Human auditors can

thus observe the number of one-shot authorisations occurring, but the reader must

146

Figure 8.3: Smartcards and reader used with the nCipher nForce

be trusted to make sure that nothing can interrupt the power between the itself and

the card. The electrical contacts on frequently used smartcards may deteriorate,

and the resulting errors must be taken into account when designing procedures for

authorisation. A set of administrator smartcards and their corresponding reader

is shown in figure 8.3. Note that nCipher’s 5 1/2” form factor nShields (see sec-

tion 6.3.4) have an integrated smartcard reader, which is much more difficult to

tamper with.

Keyswitches

Keyswitches have some nice properties, and they have been used successfully in

military environments. Specially chosen key types are very difficult to copy without

specialist equipment, which is expensive, and difficult to obtain.

The disadvantage of keyswitches is that they are not really compatible with high

quality tamper-resistant enclosure. They must either be tamper resistant them-

selves, or sit on the boundary of tamper resistance for the main module. If the

key switch is to be tamper-resistant, it must have the computing power to set up

a secure connection between itself and the HSM. Constructing a tamper resistant

package with all this functionality is just a reinstantiation of the latter problem –

including a non-tamper-resistant keyswitch on the boundary of the HSM itself. This

problem is hard too.

The real undoing of keyswitches is their inflexibility. Protecting against key loss,

and implementing configurable threshold sharing schemes are difficult when the

manufacturer must be consulted each time. This approach simply moves the weakest

147

link to the authorisation process for requesting an extra key from the manufacturer.

Other Access Tokens

Electronic key shaped physical tokens have very similar properties to smartcards,

though the physical form factor is arguably preferable as it psychologically reminds

the holders to take the same care of the token as they would with a physical key. In

addition, the form factor of datakeys (seen in figure 8.4) has the connector inset into

the plastic of the key, and this makes stealthy establishment of electrical connect

rather more difficult than with a smartcard.

Figure 8.4: Datakeys used with the Chrysalis Luna PED

Biometrics (and any devices with significant error rates) are inappropriate for one-

shot authorisation.

8.3.4 Providing Feedback: Display Information

Trusted paths can be useful for providing feedback. Though several manufacturers

now have HSMs with multi-line LCD displays, none are yet utilising this display

path for certification information. This means that it is impossible to tell exactly

what is getting signed. There has been little support so far for implementing such

displays, because designers are uncertain what information should be displayed to

the user, and whether it is possible for a human to make an absolute judgement on

this information before authorising the signature operation. This one of the reasons

why procedural controls must still be designed to prevent host compromise.

148

The “authorisation problem” – writing a policy which describes when and by whom

a key can be used is a hard problem, and is not a purely technical one. One of the

important building blocks to helping pass this problem back to the outside world

is the trusted display. Companies such as nCipher are only tentatively starting to

integrate the policy processing into HSMs themselves, and once this happens, we

may see the displays taking a more active role than just reporting status.

Figure 8.5: nCipher’s netHSM ‘trusted display’

8.3.5 Recommendations

There can be no trusted path between HSM and operator without trusted initiali-

sation of the module. It is true that even the initialisation process is susceptible to

attack, but procedures have already been designed to permit the manufacturer to de-

liver a module which can be verified as un-tampered, so from there these procedures

may be extensible to monitoring the activity of installing parties.

System designers should accept the need to trust the installers of the module, and

capitalise on this channel of trust to bootstrap as much future trust as possible.

The HSM should ideally run autonomously from this stage without ever requiring

administrator intervention.

If authorisation decisions are outside the scope of the HSM, then a trusted path

for both display and authorisation should be used. Designing an application so

that the details of the action to be authorised are intelligible by humans is difficult,

and somewhat outside the scope of a HSM manufacturer, who can only provide

the trusted general purpose display. For authorisation, all the currently available

electronic access tokens seem to have similar weaknesses.

149

To minimise the risk of breach, each should possess a serial number to make it

individually identifiable. It should be hard to forge a token; not just from base

materials, but also hard to pass off one genuine token as another. To this end,

affixing multiple unique serial numbers which are difficult to forge (e.g. holographic

stickers) may be part of the solution.

The future of authorisation tokens might head towards form factors with their own

I/O channels, such as a mobile phone. Chrysalis’ trusted keypad goes part of the

way, but the crucial point is that this form factor allows each user to be responsible

for the integrity of their own trusted path. Each token should either be locked

away in a tempest shielded safe (so that no radio communication can occur with

the token), or remain in the possession of its assigned owner. Swapping of tokens

means that the single attacker could compromise multiple tokens.

Secondary token protection methods such as PINs or passphrases reduce the per-

ceived value of the token and encourage carelessness. If PINs or passphrases are

used, they should be bound to individuals rather than tokens.

8.4 Personnel and Social Engineering Issues

Whilst different approaches to trusted path between the security module and the

user possess different pros and cons, all have to contend with attacks that work at

a higher level, regardless of the mechanism used – those that exploit weaknesses in

the personnel operating the machines, or in the human designers perception of how

the machines should be operated.

Trust must be placed in the human operators, but deciding where to put it is not

easy. There are no obvious tests to determine whether an employee is good or evil,

but gauging their intellectual ability is much easier. Just like the principle of least

privilege, there can be a principle of least ability – an employee should be capable

enough to do his job and not any more capable. This could be considered the

ultimate protection against exploits which have yet to be found. However, it opens

up the possibility for easy deception by colleagues, superiors, or even inferiors in

the organisation. The procedural exploits described here could well be thwarted by

observant and intelligent operators.

A better principle is that of the proverb “Idle hands do the devil’s work”. An

intelligent employee with no motive to commit a crime is preferable to a motivated

but incompetent employee.

Once the employees are chosen, they need to be briefed with a set of instructions

on how the HSM should be operated – the procedural controls. It is important to

explain to those performing the controls the consequences of failure (in terms of the

system, not just their jobs). Without offering this explanation, the actual controls

150

enforced may fall short in some subtle way, or migrate to insecure controls seem-

ingly equivalent, particularly in organisations with a rapid turnover of staff. Let us

now consider some specific examples where poorly designed or explained procedural

controls can leave room for social engineering. For simplicity the discussion will talk

only in terms of smartcards, but the principles apply equally to other access tokens

of this class.

8.4.1 Dual Security Officer Attack

Baltimore’s Sureware Keyper module [49] requires two security officers to perform

privileged functions such as changing of master keys, and cloning of the module.

However, only a single officer is required to perform less privileged operations such

as changing the communications configuration, or re-enabling the module after a

power down.

A corrupt operator could replace a genuine module with a false module, including

smartcard reader and keypad. The operator then claims that the power has failed

(maybe after staging a gratuitous fire alarm to cause confusion), and asks one of

the security officers to re-enable it. As the security officer inserts his card and

types his PIN, this data is routed to a genuine module, which then becomes half-

way authorised towards privileged operations. The operator need only repeat the

request to the other security officer, and the module is fully authorised.

Changing the module so that both cards are required simultaneously is not neces-

sarily the correct solution. Although both security officers would now need to use

their cards at the same time, a single operator may still be capable of deceiving

both. Each could be asked to re-enable a different fake module, thus meeting the

conditions for a full authorisation of one real module.

The operation of the module and properties of the access token need to be fully

considered and harmonised with the procedural controls. If the cards are normally

stored in the corporate safe, a suitable rule would be “only one of the SO smartcards

may be withdrawn from the safe by each SO officer. If the requests are separate they

should be dealt with one at a time and in sequence, with at least an 5 minute gap

between return of the first card and withdrawal of the second”.

If the cards are permanently entrusted to security officers or are stored separately,

then they should ideally make clear to the authoriser the exact nature of the action

which is to be performed. As the I/O capabilities of the commonly used class I-III

tokens (see figure 8.1) are very poor, they are not suitable as multi-role tokens. This

is the primary weakness of the Sureware Keyper design, in legitimising the use of

security officer cards for less sensitive configuration options. During this time the

security officer may take less care of his card because he assumes it is useless on its

own. But with or without this architectural feature, a mistake in the procedural

controls still leaves the module vulnerable.

151

When no privileged operations are required, the best practice is to keep the access

tokens locked in a well administered safe. The procedural controls should make it

clear exactly which combinations of access control tokens are dangerous, and the

HSM designers should adjust their functionality to keep the combinatorics simple.

When using a sensitive access token, a security officer must always check that the

module he is authorising has no evidence of tamper, and that it is the correct module.

This task will always remain time-consuming when the outermost housing is not the

tamper-evident one, and does not provide identification.

The two security officer paradigm makes deception attacks too feasible, because it

requires only a single deception if one security officer is corrupt, and may still leave

simultaneous automated deception feasible. Where possible, procedural controls

should be designed so that more than one simultaneous human deception is required

to gain worthwhile access. The next example illustrates the risks of automated

deception.

8.4.2 M-of-N Security Officer Attack

The poor performance of smartcard based authorisation tokens for one-shot autho-

risation has already been touched upon. The nCipher nForce module has neither

a trusted path for ensuring one-shot authorisation, nor for verifying what action is

about to be authorised. So when an operator inserts his smartcard to authorise a

module to sign a certificate confirming someone as a new CA, how can the operator

be sure that no other certificates have been signed at the same time?

One possible solution for this is to use an “action counter” in the HSM which

limits the number of actions which can be performed per insertion of a valid card

sequence. The operator still cannot be sure of what was signed, but if the number of

signing operations per insertion is restricted to one, then if the operator observes his

certificate to be correctly signed, he can deduce that nothing else has been signed.

But here is the catch: the host need only convince the operator that there was an

error during the insertion to trick him into re-inserting his card. When the operator

puts his card in, the host displays an error dialogue “error reading smartcard, please

try again” or “incorrect PIN, please try again” and the operator will dutifully obey.

This trusted path issue is not easy to fix, because giving the operator inherent

assurance that the correct certificate has been signed is a difficult task – particularly

because certificates are not normally human readable.

This attack may seem trivial and obvious, but trying to fix it in a generic way reveals

that lack of a trusted display path has considerable implications. Addressing any-

thing other than this root problem will lead to errors. Suppose that the procedural

controls are adjusted so that two cards are required. It appears that deceiving an

operator into re-inserting a card can no longer produce the correct sequence, but

this is not the case.

152

Imagine a Certification Authority where each signing operation which must be au-

thorised by the insertion of two smartcards, each held by a different operator. Nor-

mally, each operator inserts his card into the reader in turn, and then a single signing

operation is authorised. However, if the host computer reports an error upon inser-

tion of the second smartcard, it can deceive that operator into performing a second

insertion. The host performs the requested signing after the first insertion, then the

second insertion is used to go half-way through a second run of the authorisation

process. The module is left half authorised, and the corrupt operator can return

later and complete this authorisation to gain a second signing. The actions of normal

operation and the attack can be annotated as follows:

1. AB* (Normal Operation)

1. AB*B (Single SO Attack)

2. B’A*

X stands for authorisation by principal X, * stands for a completed authorisation and

signing operation, and X’ stands for an authorisation carried over from a previous

attempt. A worse scenario is where neither operator is corrupt, and the sabotaged

host software steals a third signing after two completed authorisations.

1. AB*B (Corrupt Host Attack)

2. B’*AB*

The same technique can scale up to m-of-n smartcard schemes, and one signing can

be stolen per m valid signings. An example follows for m = 4 :

1. ABCD*D (Corrupt Host Attack)

2. D’ABC*CD

3. C’D’AB*BCD

4. B’C’D’A*ABCD*

As number of cardholders goes up, the probability of a workable order of insertion

(given that the cardholders use the reader in a random order) goes down, but for

m ≤ 3 it is quite likely that the host can steal a signing. Demanding a reinsertion

of the smartcard is not an unusual event; when a smartcard becomes damaged due

to dirty contacts, insertions commonly fail.

153

8.4.3 How Many Security Officers are Best?

Even in the absence of ingenious attacks that can be perpetrated by a single security

officer, the optimal number of security officers must be decided. Too few security

officers makes collusion or deceit feasible, whilst involving too many can result in

diminished responsibility.

If a company can be confident that abuse will be quickly spotted, the optimal number

is one: blame is obvious, and the security officer will be aware of this. But companies

protecting critical data and top level keys may not be happy entrusting their most

valuable assets to a single person. Two security officers seems to have become the

de facto standard, as the division of trust is still clear, and rising to three seems

to add extra expense without a quantifiable increase in security. But three security

officers does tighten security: a corrupt officer will be outnumbered, and deceiving

two people in different locations simultaneously is next to impossible. The politics of

negotiating a three-way collusion is also much harder: the two bad officers will have

to agree on their perceptions of the third before approaching him. Forging agreement

on character judgements when the stakes are high is very difficult. So while it may

be unrealistic to have three people sitting in on a long-haul reconfiguration of the

system, where the officers duties are short and clearly defined, three keyholders

provides that extra protection.

8.4.4 Recommendations

After considering the issues, there are a plethora of decisions to be made when de-

signing procedural controls for the handling of tokens. Should each person own a

particular token, should it be signed in and out, or carried at all times? An in-

sertion procedure must be developed, and rules for duration of possession, holidays

and illness must be put in place. Some conditions are best enforced by functional

separation (multiple personnel with differing tasks), and some by dual control (mul-

tiple personnel with the same task). However, the single overriding principle is to

give the HSM maximum possible knowledge about its human environment. Sep-

aration of duty into “doers” and “auditors” encourages both to perform the task

correctly, but care must be taken that pure auditors do not become lazy. Where

possible the procedures should require conflicting sets of knowledge to circumvent

e.g. involving personnel from different departments makes it unlikely that a single

person will know both well enough to socially engineer them. These principles have

been crystallised into some suggested procedures below:

• Electronic Tokens. Each token should always correspond directly to a single

individual; thus the HSM is aware of how many distinct humans have been in-

volved in each authorisation operation. When in the office, it should be carried

on a chain around the neck, which is a well visible location and discourages it

from being accidentally left behind.

154

• Regular Authorisation (occurs during the normal operation of the company).

It is not economical to invoke dual control for all regular authorisations, thus

the opposite approach of catching abusers at audit is employed instead. Audit

cannot however catch abuses which are not yet known. To this end, there

should be a supervisor who randomly inspects the usage of tokens. For exam-

ple, whenever an operation is requested from the HSM, it could with a small

probability demand further authorisation from a supervisor. If this authorisa-

tion is not given the HSM would raise an alarm. Thus while a token is abused

for in a way that does not set off existing audit alarms, the supervisor is likely

to become aware. A single token holder is the only viable model for regular

authorisation, but it is important to have a physically present supervisor as

well as a retrospective audit.

• Key Entry. There should be three keyholders chosen from different depart-

ments. All keyholders should remain in each others presence whilst in pos-

session of the keys. The keys should be not be available singly – either they

are all signed out, or none are. The storage media for the key should not be

multi-role.

• Irregular Authorisation. For rarely occurring authorisation events there should

be one management-level token holder and two trained security officers. Once

the module has been highly authorised, one of the security officers should

perform the actions while the other audits. Involving a management-level

token holder at the beginning of the authorisation causes extra hassle which

protects against security officers over-using their tokens, and encourages the

security officers to assess the validity of each others requests. The tokens

should be signed in and out simultaneously.

155

Chapter 9

The Future of Security APIs

Security APIs design has already gone through substantial change since the first

APIs were incorporated into HSMs. They have advanced past monotonic designs

with encrypted argument passing, and current designs do not shy away from internal

state – they use object handles, usage counters, and storage slots. Meanwhile, HSM

input/output facilities have developed too. Access control has moved on from the

humble key-switch and has heartily embraced secret sharing schemes, smartcards

and even role-based access control (RBAC). True Security APIs are now less and

less designed by the hardware manufacturers, but instead by OEMs who take a

general purpose crypto API and add in the security policy. The languages used for

policy description have also become frighteningly complex.

As the Security API industry expands and begins to mature, will we be faced on

all fronts with the “inevitable evolution of the Swiss army knife”? What will APIs

look like in two decades time, who will use them, and will they be secure?

9.1 Designing APIs Right

There must be hope for the future because secure designs for simple APIs are already

in our reach. Credit-dispensing APIs implement straightforward policies which do

not have too ambitious goals, and on the whole, they work. After Prism’s TSM200

API has its master key loading weakness fixed (section 7.3.11), we are left with a

relatively simple API that takes a secret key, holds a value counter, and dispenses

electronic credit tokens until the value counter runs out. This API is secure, as far

as we can tell.

APIs like this work because the security policy does not take on the whole real-

world problem that the security architect is faced with, instead considering a smaller

problem and completely solving it. All the API promises is that the device will not

dispense more than a certain amount of credit; it does not worry about to whom and

where and when dispensing can happen. This simple building block is a valuable

156

component of a real-life infrastructure because it prevents a catastrophic failure

mode of the system. A more ambitious API may promise even greater potential

security, but fall short of its greater goals and have a glitch that lets an even worse

failure mode occur.

In the future we are likely to be faced with larger and more complex real-world

problems, that will tax our ability to identify the neatly soluble subcomponents.

The danger is that the API designers of the future will be given very high-level

problems, and will in effect have to perform security architecture design. Digital

Rights Management systems, for instance, are designed to enforce qualitatively more

complex marketing models than those that are used today – the high-level policy is

in essence that everyone should pay exactly what they can afford.

If in the future API design policies remain as simple as those of protocol design,

we will have all the tools we need to design a good API. We have modern crypto

algorithms which are comfortably strong enough; we have much less limitation on

storage and processing power; we have all sorts of useful peripherals and trusted I/O

devices for controlling and interacting with the API. But if the larger component

of Security API design is security architecture, we need new design technology as

well. We will need tools to manage complexity, a better understanding of policy

and procedural design, and good methods for splitting policies into appropriate

well-understood chunks.

So a crucial aspect to designing APIs right in the future will be to spot the hard

problems that lurk within high-level security policies, and not to take them on –

leave them for the security architect to see and deal with. Let us suppose that future

API designers are given well-formed and simple policies to implement: what will the

resulting APIs look like?

9.2 Future API Architectures

One possibility is that new Security APIs will all be specialisations built upon the

general-purpose crypto APIs provided by HSM manufacturers and O/S vendors.

There would be a few dominant vendors (or maybe only one) of general purpose

crypto APIs. New APIs will be built from configuration information that specialises

the key and data type systems, and maybe a couple of specialised transactions

written in a scripting language that glues existing transactions together. In this

vision of the future, APIs will become more and more heavyweight – each encrypted

data token could be several kilobytes in size, maybe requiring a public key operation,

symmetric decryption and multiple hash function invocations just to check. If APIs

are designed by building upon a rich feature set, there will be an even worse danger

of API bloat. Even though designers have a clear policy to implement, they may

have difficulty understanding the general purpose API’s full feature set. They may

157

be unable to assure themselves that their configuration choices for the general-

purpose API do actually implement their policy. We are already beginning to see

this problem in today’s APIs. Some OEMs are finding that only a few of their

programmers fully understand all the features of a complex API such as the nCipher

nCore API. They end up creating their own intermediary APIs to lock down certain

features and make it easier to review code written by less trusted or less skilled

programmers. In the future this problem could get much worse.

An alternate vision for the future does not entail API bloat in quite the same way.

As wireless computers become ubiquitous in the future, communications security

will be pushed forward. The constant requirement for interaction between low-end

embedded systems and more sophisticated devices or HSMs acting as ‘concentrators’

may keep API design rooted in low-level bit-twiddling primitives. These primitives

will be poorly suited to implementation in the less powerful and restrictive scripting

languages which can only grow in complexity to the limit of what can be sandboxed

inside an HSM. So instead we may see APIs continuing to be designed afresh, where

the HSM manufacturer provides only the tamper-resistant shell and some hardware

crypto support, and the API message specifications are hand grown by the same

person who is trying to implement the security policy. In this future, there is a

good chance that such APIs can be designed right, so long as the security policy

is manageable and not too ambitious. Ironically, the wisdom accumulated in this

thesis about good design of the older, less powerful HSMs could continue to be

relevant for some time, if Security APIs are pushed out into less powerful platforms.

In the very long term, ease of analysis may be a new player shaping the design

of future APIs. If particular tools and techniques that are popular and familiar

to the protocol design community are adopted, then APIs may well develop to be

amenable to these forms of semi-automated analysis. These tools will probably

reward explicitness, and concise transactions, rather than parameterised ones. Such

tools are currently poor at dealing with the ‘state space explosion’; it seems probable

that the tools will encourage designs where all the long-term state is accumulated in

once conceptual place, rather than being spread across internal registers, encrypted

inputs and authorisation tokens. It may even happen that future designers will find

a way to limit the accumulation of state, for instance by resetting to a default state

after a certain number of command executions.

Finally, we must always be wary of function creep: today’s APIs will certainly ex-

pand to take on new purposes tomorrow, whether through expansion of an HSM

manufacturer’s underlying general-purpose API, or through development of the se-

curity policy. In addition to the risks of inadvertent addition of dangerous features,

we have to watch for economic incentives punishing security – developers may know-

ingly add strange and risky new facilities to an API, if the value of opening new

markets is seen to be more important than encouraging a high standard of security.

158

9.3 Trusted Computing

How much work will there be for Security API designers in the future? The relax-

ation of US export restrictions on cryptographic hardware and the bursting of the

dot com bubble have not been good for the size and diversity of the Security API

industry. However, Trusted Computing could change everything; it is the biggest

single factor in future prospects for Security APIs. Trusted Computing has become

a catch-all term describing efforts by multiple large hardware and software vendors

to allow security policies to be enforced effectively on their platforms. It is already

surrounded by controversy (see section 5.3.11 and Anderson’s TC FAQ [55]) .

If Trusted Computing arrives on the PC platform, myriads of new Security APIs will

follow. Microsoft’s Next Generation Secure Computing Base (NGSCB, previously

known as ‘Palladium’) aims to allow any and all application developers to create

trusted components of their applications, which will perform sensitive processing in

a memory space curtained and protected from both other processes and a potentially

sabotaged operating system. At the boundary to every trusted component there will

be a policy on access to the sensitive data and thus a Security API of sorts.

There is lots of speculation upon possible and intended applications of this technol-

ogy. Media vendors will use it to create Digital Rights Management systems, soft-

ware vendors will look to achieve lock-in to their product lines, and service providers

will use it to support new purchase models. It seems that even the smallest share-

ware vendors will have the opportunity to exploit this technology to enforce whatever

registration requirements they wish. Trusted Computing Security APIs will prob-

ably look more and more like interfaces between object-oriented classes, and it is

likely that this mixing of API design with hands-on programming will fragment the

policy definition of the API, and commands will be poorly specified, if at all. In the

rush to exploit the new centre of trust, there will be plenty of hard decisions to be

made; they will likely be glossed over, and only got right on the third release. One

trend may be to place as much functionality in the trusted component as possible.

For instance, consider how much code is required to render an HTML email. It is

also likely that these poorly designed trusted components will be broken in the same

ways that operating systems are today: by having buffer and integer overflows, and

through exploitation of the lesser used parts of the API which were never properly

tested for security. In fact it is not entirely clear that the quality of code inside

HSMs is that good at the moment – it may just be that not enough people are

searching for the classic faults.

If Trusted Computing does arrive, it will be more important than ever not just

to understand how to design Security APIs right, but also to communicate this

understanding and build it into the skill set that the average programmer picks up.

159

9.4 The Bottom Line

Whilst it is exciting for industry and researchers to lick their lips and imagine a

world with HSMs in every PC, and Security APIs everywhere, we have to accept

that none of this new technology – Security APIs, Hardware Security Modules,

Trusted Computing, Whatever – is going to be a silver bullet. There is no silver

bullet. The hope for the future of Security APIs is not that they will solve hard

problems for good, but that they will become important bricks, even keystones in

security architectures, and that we can apply the engineering know-how we have to

get these APIs correct and secure.

160

Chapter 10

Conclusions

This thesis has brought the design of Security APIs out into the open. Chapter 6

reveals pictures of HSMs that are a long way from being consumer devices in the

public eye (until the late 90s they were classified as munitions in the US). Chapter 7

explores the API abstractions, designs and architectures and shows what has gone

wrong with existing APIs. Under the harsh light of day we see that every HSM man-

ufacturer whose Security API has been analysed has had a vulnerability identified,

most of which have been detailed in this thesis. Some APIs have suffered catas-

trophic failures – a master key compromise on the Prism TSM200 (section 7.3.11),

and nearly every financial HSM broken by the decimalisation table attack (sec-

tion 7.3.10). We see practical implementations of theoretical attacks (section 7.3.7)

that reveal aspects of both the system attacked and the attack method itself, that

are difficult to spot in any other way.

The harsh light of day also shows us a more unpleasant truth: we are still largely

ignorant about the causes of these failures. How did the designers fail to notice the

vulnerabilities, and what new wisdom can they be given to enable them to get it

right next time? Chapter 8 discusses heuristics for API design, drawing together

established wisdom from other areas of security, in particular highlighting the ever-

applicable robustness principles of explicitness and simplicity. Yet there is little in

these heuristics that is fundamentally new and has been until now unavailable to

designers.

We could resign ourselves to ignorance, or continue to search blindly for good heuris-

tics. On the other hand, maybe the truth is that little new wisdom is actually needed

for Security API design – it is just a matter of assembling the knowledge we have,

giving it a name, and building it into the set of skills we impart to the next gen-

eration of programmers. For this approach to work, we have to get the roles and

responsibilities right.

161

10.1 Roles and Responsibilities

Security APIs aim to enforce policies on the manipulation of sensitive data. When

an API attack is performed, it is the policy in the specification document given to

the Security API that is violated. The trouble is that in real life this API-level

policy document may not exist, and there is probably not an API designer to read

it anyway. Instead, it seems that APIs are designed by someone examining the

top-level policy: what the entire system – people, computers, bits, bytes and all –

is supposed to do, and trying to conceive a computer component that bites off as

large a chunk of the problem as possible.

It is this continuing practice that could keep Security API design a hard problem,

where mistake after mistake is made. While this lack of definition in the API security

policy makes it hard to build good APIs, it also has the side-effect of creating an

identity crisis for API research.

The vulnerabilities discovered and catalogued in chapter 7 draw on a bewildering

range of principles. All of them are clearly failures of the system as a whole, but

it is hard to pick one out and declare it to be a typical API attack. A forced

decision might conclude that a type confusion attack (such as that on the VSM in

section 7.3.2) is typical. Restricting our scope of attacks to those similar to this,

we find firstly that we have only a few attacks, and secondly that they all exploit

classic failures well known and documented in security protocols literature, such as

key binding and separation of usage. This definition reduces Security API analysis

to a backwater of protocol analysis.

On the other hand, if we embrace the many and varied attacks, and declare them

all to be Security API attacks, we can only conclude that the API designer must be

the security architect – the man with the big picture in his head.

The separation of roles between security architect and Security API designer is

identified in chapter 9 as crucial in the shaping of the future of Security APIs and

our ability to tackle harder real-world problems in the future. Without the role

separation, Security API research will be stuck in a state of disarray: a messy smor-

gasbord of knowledge, techniques and wisdom plucked from other fields of security

research. It is up to the security architect to try to develop an understanding of

Security APIs, create a role for the API designer, and resolve this identity crisis.

Armed with a broad-ranging familiarity of Security API architectures, hardware se-

curity modules and procedural controls, a security architect should become able to

perceive a potential conceptual boundary at the HSM component of their design.

With encouragement he might put some of his security policy there, and there will

emerge a ‘Security API designer’ role, in which it is possible to get a design 100%

right. The policy assigned to this role must be one that benefits from the rigorous

and unforgiving execution of a computer, otherwise the HSM will be a champion

of mediocrity, and require as much human attention and supervision as another

untrustworthy human would.

162

10.2 The Security API Designer

The Security API designer may now have a clear policy to implement, but will not

necessarily have an easy job. She will need to appreciate the target device’s view

of the world – its input and output capabilities, its trusted initialisation, authorisa-

tion, identification and feedback channels, its cryptographic primitives and storage

architecture. She will then need to diligently balance simplicity and explicitness in

the design of the transaction set, obey principles of binding, key separation, and

carefully monitor information leakage of confidential data processed.

The Security API designer will have to choose whether to build her design on top of

general purpose crypto services, or alternately to grow a new API from scratch each

time. She must also be rigorous in avoiding absolutely all implementation faults, as

it is extremely hard to incorporate robustness in a design against attacks combining

both specification and implementation level faults. If the policy given to her is clear

enough, she may possibly benefit from formal methods at design time: identifying

complexity bloat, and spotting and preventing classic binding, key separation and

type confusion attacks before they happen. New formal methods may even be

developed to help quantify and set bounds on information leakage through APIs.

The Security API she designs will be part of a whole system, and whole systems

inevitably remain in a state of flux. The security architect will have chosen how

much flux to pass down. He has the option of creating a point of stability where

‘designing Security APIs right’ becomes a solved problem. Alternatively he may

pass down so much flux that uncertainty is guaranteed, and Security API designers

must resign themselves to the traditional arms race between attack and defence that

so many software products have to fight.

10.3 Closing Remark

This thesis does not have many of the answers to good API design, but it does con-

stitute a starting point for understanding Security APIs. Once this understanding is

absorbed we will really have a chance to build secure APIs and use them to change

the way we do computing, be it for better, or for worse.

163

Chapter 11

Glossary

4753 IBM Cryptographic Adaptor packing 4755 HSM for connection to

IBM mainframe. A stripped down PC with an 4755 or 4758 and

an IBM channel interface card. May provide additional physical

security too.

4754 IBM Security Interface Unit. Provides security of access to PS/2s

and PC. Comprises a reader for your IBM Personal Security Card,

12-key keypad, and gives access to optional signature verification

feature on the 4755. Can also be used to set or change 4753 func-

tions. Part of TSS

4755 IBM Hardware Security Module, built around Intel type chips. Pro-

vides DES support and has tamper-resistant packaging. Part of

TSS

4758 IBM’s PCI Cryptographic Coprocessor. Programmable tamper-

resistant PCI bus card supporting DES, RSA and more.

API Application Programmer Interface

Atalla An HSM manufacturer

ATM Automated Teller Machine. A synonym for ‘cash machine’.

CA Certification Authority

CCA Common Cryptographic Architecture – IBM’s financial security

API

CLEF Commercial Licenced Evaluation Facility

Conformance Profile PKCS#11 document describing what features of PKCS#11 it

implements, and what additional semantics it adds

Cryptoprocessor Synonym for HSM

CVV Card Verification Value. A secret field written on the magstripe

calculated from the PAN, to make it harder to forge magstripe

cards from the account number alone.

Decimalisation Table A table used for converting PINs produced in hexadecimal (i.e.

containing digits A-F) down to containing only 0-9. The typical

164

table maps 0-F to 0123456789012345. An example decimalisation

is 3BA2 becoming 3102.

DRM Digital Rights Management. The restriction of flow of digital in-

formation, in particular, entertainment media.

EFT Electronic Funds Transfer

EMV Europay, Mastercard, VISA. EMV is the name for the new chip

and PIN electronic payments scheme that is currently replacing

magstripes on credit and debit cards.

Eracom Australian HSM manufacturer

FIPS Federal Information Processing Standard – an American IT stan-

dard produced by NIST

HSM Hardware Security Module

IRM Information Rights Management. A subcategory of Digital Rights

Management.

KEK Key Encrypting Key. A transport key normally established by man-

ual transfer of key components, which other keys are encrypted

under (IBM terminology).

MAC Message Authentication Code. A MAC Key is a key held by an

HSM permissions set such that it can only be used for calculating

or verifying MACs on messages.

MIM Meet-In-the-Middle – An attack exploiting collisions between items

in a data set, as in the birthday paradox

Monotonic A monotonic API is one where a transaction performed with certain

inputs can be repeated at any time by providing the same inputs,

and will result in the same output. (During operation of the API,

the set of valid outputs increases in size monotonically)

nCipher An HSM manufacturer

nCore nCipher’s main API, on top of which other applications are built

NIST National Institute of Standards and Technology

NGSCB Next Generation Secure Computing Base. New name for Microsoft’s

‘Palladium’ initiative

OEM Other Equipment Manufacturer. In a Security API context, a com-

pany that takes a custom programmable HSM and builds an API

for it.

PAL Permissive Action Link. A Nuclear weapon authorisation system,

also referred to as a Prescribed Action Link.

Palladium Microsoft’s Trusted Computing initiative, designed to allow appli-

cation developers to shield code and data from each other, and

malicious parties.

PAN Primary Account Number

PIN Personal Identification Number

PIN Mailer Special tamper-evident stationery for sending PINs through the

post to customers.

165

PKCS#11 Public Key Cryptography Standard #11 – Standardised HSM API

developed by RSA.

PKI Public Key Infrastructure

PMK PIN Master Key (aka PIN Derivation Key, PIN Generation Key) –

key used to generate a customer’s PIN from her account number

POS Point of Sale (ie. a retail outlet)

Prism An HSM manufacturer

Racal SPS Racal Secure Payments Systems – one of the most successful finan-

cial HSM manufacturers

RBAC Role Based Access Control. In this thesis, probably referring to

IBM’s 4758 CCA RBAC system.

RG7000 Highly popular banking HSM produced by Racal (now owned by

Thales)

SSL Secure Sockets Layer – An encryption protocol at TCP/IP level,

commonly used to secure HTTP

Thales An HSM manufacturer (originally called Racal)

TLA Three Letter Acronym

TMK Terminal Master Key – the key at the top of the key hierarchy

inside an ATM machine. Also found lower down the hierarchy in

HSMs at bank operations centres.

Transaction A command which forms part of the Security API. This naming

is intended to highlight the atomicity of the command – manip-

ulation of the HSM state cannot occur in smaller steps than one

transaction.

Transaction Set The set of commands available to the user of a Security API

TRSM Tamper-Resistant Security Module – synonym for HSM (Prism ter-

minology).

TSS Transaction Security Services (IBM mainframe financial transac-

tion set)

UDX User Defined eXtension. IBM’s toolkit for adding custom transac-

tions to the CCA.

Velocity Checking Intrusion detection for possible fraud against a bank account, done

by measuring the rate of withdrawal of cash over time.

VISA A large payments service provider.

XOR Bitwise Exclusive-OR

Zaxus Racal SPS’s new brand name, that lasted for only a year or so

before they were bought by Thales.

ZCMK Zone Control Master Key. VSM speak for a communications key

held between to member banks of an ATM network. Identical to a

ZMK.

ZMK Zone Master Key. Racal speak for a ZCMK.

166

Bibliography

[1] R. Anderson, “The Correctness of Crypto Transaction Sets”, 8th International

Workshop on Security Protocols, Cambridge, UK, April 2000

[2] R. Anderson, “Security Engineering – a Guide to Building Dependable Dis-

tributed Systems”, Wiley (2001) ISBN 0-471-38922-6

[3] R. Anderson, “Why Cryptosystems Fail” in Communications of the ACM vol 37

no 11 (November 1994) pp 32-40; earlier version at http://www.cl.cam.ac.uk/

users/rja14/wcf.html

[4] R. Anderson, M. Bond, “Protocol Analysis, Composability and Computation”,

Computer Systems: Papers for Roger Needham, Jan 2003

[5] R. Anderson, S. Bezuidenhoudt, “On the Reliability of Electronic Payment Sys-

tems”, in IEEE Transactions on Software Engineering vol 22 no 5 (May 1996) pp

294-301; http://www.cl.cam.ac.uk/ftp/users/rja14/meters.ps.gz

[6] RJ Anderson, MG Kuhn, “Low Cost Attacks on Tamper Resistant Devices”,

in Security Protocols (Proceedings of the 5th International Workshop (1997)

Springer LNCS vol 1361 pp 125–136

[7] G. Bella, F.Massacci, L.Paulson, “An overview of the verification of SET”, Inter-

national Journal of Information Security

[8] M. Bond, “Attacks on Cryptoprocessor Transaction Sets”, CHES 2001, Springer

LNCS 2162, pp. 220-234

[9] M. Bond, R. Anderson, “API-Level Attacks on Embedded Systems”, IEEE Com-

puter, Oct 2001, Vol 34 No. 10, pp. 67-75

[10] M. Bond, P. Zielinski, “Decimalisation Table Attacks for PIN Cracking”, Univer-

sity of Cambridge Computer Laboratory Technical Report no. 560

[11] M. Burrows, M.Abadi, R. Needham, “A Logic of Authentication”, ACM Trans-

actions on Computer Systems, 1990, pp. 18-36

[12] G. Campi, “Thermal Simulations Applied to Embedded Cryptographic Copro-

cessor Devices” http://www.flotherm.com/technical_papers/t278.pdf

[13] R. Clayton, M. Bond, “Experience Using a Low-Cost FPGA Design to Crack DES

Keys”, CHES Workshop 2002, San Francisco, Springer LNCS 2523, pp. 579-592

167

[14] J. Clulow, “On the Security of PKCS#11”, CHES Workshop 2003, Cologne,

Germany, LNCS 2779 pp. 411-425

[15] J. Clulow, “The Design and Analysis of Cryptographic APIs for Security Devices”,

MSc Thesis, University of Natal, SA

[16] IBM 4758 PCI Cryptographic Coprocessor, CCA Basic Services Reference And

Guide, Release 1.31 for the IBM 4758-001

[17] D Davis, “Compliance Defects in Public-Key Cryptography”, Sixth Usenix Secu-

rity Symposium Proceedings, July 1996, pp. 171-178

[18] Y. Desmedt, “An Exhaustive Key Search Machine Breaking One Million DES

Keys”, Eurocrypt, 1987

[19] W. Diffie and M. Hellman, “Exhaustive cryptanalysis of the NBS Data Encryption

Standard” , Computer vol.10 no.6 (June 1977) pp. 74-84.

[20] Diners Club SA Pty. versus A. Singh and V.Singh, March 2000-May 2003, High

Court of South Africa, Durban, SA

[21] Electronic Frontier Foundation, “Cracking DES : Secrets of Encryption Research,

Wiretap Politics & Chip Design”, O’Reilly. (May 1998)

[22] “Security Requirements for Cryptographic Modules” Federal Information Pro-

cessing Standards 140-1

[23] IBM Comment on ‘A Chosen Key Difference Attack on Control Vec-

tors’, Jan 2000, available at http://www.cl.cam.ac.uk/~mkb23/research/

CVDif-Response.pdf

[24] IBM “Update on CCA DES Key-Management” http://www-3.ibm.com/

security/cryptocards/html/ccaupdate.shtml

[25] IBM 3614 Consumer Transaction Facility Implementation Planning Guide, IBM

document ZZ20-3789-1, Second edition, December 1977

[26] IBM, ‘IBM 4758 PCI Cryptographic Coprocessor – CCA Basic Services Reference

and Guide, Release 1.31 for the IBM 4758-001’, available through http://www.

ibm.com/security/cryptocards/

[27] IBM Inc.: Update on CCA DES Key-Management. (Nov 2001) http://www-3.

ibm.com/security/cryptocards/html/ccaupdate.shtml

[28] IBM Inc.: CCA Version 2.41. (5 Feb 2002) http://www-3.ibm.com/security/

cryptocards/html/release241.shtml

[29] IBM Inc.: Version history of CCA Version 2.41, IBM 4758 PCI Cryptographic

Coprocessor CCA Basic Services Reference and Guide for the IBM 4758-002.

IBM, pg xv (Feb 2002)

[30] “IBM Enhanced Media Management System”, http://www-306.ibm.com/

software/data/emms/

168

[31] M. Kuhn, “Probability Theory for Pickpockets – ec-PIN Guessing”, available

from http://www.cl.cam.ac.uk/~mgk25/

[32] D. Longley, S. Rigby, “An Automatic Search for Security Flaws in Key Manage-

ment”, Computers & Security, March 1992, vol 11, pp. 75-89

[33] S.M. Matyas, “Key Handling with Control Vectors”, IBM Systems Journal v. 30

n. 2, 1991, p. 151-174

[34] S.M. Matyas, A.V. Le, D.G. Abraham, “A Key Management Scheme Based on

Control Vectors”, IBM Systems Journal v. 30 n. 2, 1991, pp. 175-191

[35] J.F Molinari, “Finite Element Simulation of Shaped Charges” http://pegasus.

me.jhu.edu/~molinari/Projects/Shape/SLIDE-1.html

[36] Robinson, J.A. “A machine-oriented logic based on the resolution principle”, 1965,

Journal of the ACM, 12(1): 23-41.

[37] S. Skorobogotov, “Low temperature data remanence in static RAM”, University

of Cambridge Computer Laboratory Technical Report TR-536 http://www.cl.

cam.ac.uk/TechReports/UCAM-CL-TR-536.pdf

[38] F.Stajano, R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-hoc

Wireless Networks”, 1999, 7th International Workshop on Security Protocols,

Cambridge, UK

[39] C. Weidenbach, “The Theory of SPASS Version 2.0”

[40] Altera Inc.: Excalibur Development Kit, featuring NIOS. http://www.altera.

com/products/devkits/altera/kit-nios.html

[41] http://www.keyghost.com

[42] “Algorithmic Research” PrivateSafe Card Reader http://www.arx.com/

products/privatesafe.html

[43] Formal Systems, the manufacturers of FDR http://fsel.com

[44] http://www.research.att.com/~smb/nsam-160/pal.html

[45] http://www.celestica.com

[46] http://www.nextpage.com

[47] http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/

default.mspx

[48] http://www.infraworks.com

[49] http://www.baltimore.com

[50] http://www-3.ibm.com/security/cryptocards/html/overcustom.shtml

[51] http://www.cl.cam.ac.uk/~rnc1/descrack/

[52] http://spass.mpi-sb.mpg.de/

169

[53] http://www.cl.cam.ac.uk/~rnc1/descrack/sums.html

[54] http://www.nsa.gov/selinux

[55] http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

170

